
www.manaraa.com

A Design Flow for the Development, Characterization, and Refinement of System Level
Architectural Services

by

Douglas Michael Densmore

B.S. (University of Michigan, Ann Arbor) 2001 
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction of the 
requirements for the degree of 

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION 
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Alberto Sangiovanni-Vincentelli, Chair 

Professor Jan Rabaey 
Professor Lee Schruben

Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UMI Number: 3275390

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3275390 

Copyright 2007 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A Design Flow for the Development, Characterization, and Refinement of System Level

Architectural Services

Copyright 2007 

by

Douglas Michael Densmore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1

Abstract

A Design Flow for the Development, Characterization, and Refinement of System Level

Architectural Services

by

Douglas Michael Densmore 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley 

Professor Alberto Sangiovanni-Vincentelli, Chair

T h e  electronics industry is facing serious challenges because of the increased demand on func­

tionality and strong pressures on both time-to-market and cost requirements. The complexity designers have 

to deal with creates design quality problems that force serious delays in product introductions and even prod­

uct recalls. There is a need for methodologies and tools that can drastically reduce design errors and costs. 

Electronic System Level (ESL) tools attempt to fulfill this need by increasing the abstraction and modularity 

by which designs can be specified. However, simply because these design styles are introduced, this does 

not automatically imply an acceptable level of accuracy and efficiency required for widespread adoption 

and eventual success. This thesis introduces a design flow which improves abstraction and modularity while 

remaining highly accurate and efficient. Specifically this work explores a Platform-Based Design approach 

to model architectural services.

Platform-Based Design is a methodology in which purely functional descriptions of a system are 

top-down assigned (or mapped) to architecture services which have their models for capabilities and costs 

exported from the bottom up. Architecture services are a set of library elements characterized by their 

capabilities (what functionality they support) and costs (execution time, power, etc). These libraries of 

components “parametrize” the set of architecture services that can be chosen by the designer to implement 

functionality and limit the design space thus favoring design re-use. The design process then proceeds 

toward implementation by binding functionality to architectures composed of elements from the library. 

The components that form a platform instance are selected by evaluating their capability of supporting the 

mapped functionality within the design constraints and by optimizing objective functions. The design space 

exploration can be done via simulation of the mapped designs by changing the mapping and the choice of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2

components. Keeping the architecture services and the functional aspects of the design separate facilitates 

design space exploration since this exploration requires only the change of the mapping of functions to 

architectural services or the selection of a different set of components to build the platform instance. In 

either case, only a minor change to the description of the design is required to perform the evaluation.

The design flow proposed in this thesis specifically focuses on how to create architecture service 

models of programmable platforms (FPGAs for example). These architecture service models are created 

at the transaction level, are preemptable, and export their abilities to the mapping process. An architecture 

service library is described for Xilinx’s Virtex II Pro FPGA. If this library is used, a method exists to extract 

the architecture topology to program an FPGA device directly, thus avoiding error prone manual techniques. 

As a consequence of this programmable platform modeling style, the models can be annotated directly with 

characterization data from a concurrent characterization process to be described.

Finally, in order to support various levels of abstraction in these architecture service models, a 

refinement verification flow will be discussed as well. Three styles will be proposed each with their own 

emphasis (event based, interface based, compositional component based). They are each deployed depend­

ing on the designer’s needs and the environment in which the architecture is developed. These needs include 

changing the topology of the architecture model, modifying the operation of the architecture service, and the 

exploring the tradeoffs between how one expresses the services themselves and the simulation infrastructure 

which schedules the use of those services.

To provide a proof of concept of these techniques, several design scenarios are explored. These 

scenarios include Motion-IPEG encoding, an H.264 deblocking filter, an SPI-5 networking protocol, and 

a communication structure of a highly concurrent system architecture (FLEET). The results show that not 

only is the proposed design flow more accurate and modular than other approaches but also that it prevents 

the selection of more poorly performing designs or the selection of incorrectly functioning designs through 

its emphasis on the preservation of fidelity.

Professor Alberto Sangiovanni-Vincentelli 
Dissertation Committee Chair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

For Mom and Dad

When you coinin’ home son? I don’t know when, but we’ll get together then...

Para Remolachita 

; Colonn Colorado, esta tesis se ha acabado! Besitos

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ii

Contents

List of Figures v

List of Tables viii

1 Introduction 1
1.0.1 Chapter Organization........................................................................................................  5

1.1 Motivating F a c to r s ......................................................................................................................... 6
1.1.1 Heterogeneity.....................................................................................................................  6
1.1.2 Com plexity........................................................................................................................  9
1.1.3 Time to M ark et.................................................................................................................. 11

1.2 1st Focus: System Level D e s ig n ...................................................................................................  12
1.3 2nd Focus: Programmable Architecture Services ......................................................................  15
1.4 Thesis Contribution.............................................................................................................................20

1.4.1 Naive Design H o w ............................................................................................................... 21
1.4.2 Proposed Design H o w ......................................................................................................... 21

1.5 Thesis Outline...................................................................................................................................... 23

2 System Level Architecture Services 25
2.0.1 Chapter Organization............................................................................................................ 27

2.1 Background and Basic D efinitions................................................................................................... 28
2.2 Related W o rk ..................................................................................................................................  31
2.3 System Level Event Based Architecture S e rv ic e s ......................................................................  34

2.3.1 M e t r o p o l is  Architecture Construction .....................................................................  36
2.3.2 Metro II Architecture C onstruction ................................................................................41
2.3.3 Architecture Service Extensions......................................................................................... 44

2.4 Xilinx Architecture Modeling Exploration.......................................................................................48
2.5 FLEET Architecture Modeling E xp lo ration ................................................................................ 62
2.6 Synthesis Path for Architecture Serv ices.......................................................................................... 64
2.7 Conclusions......................................................................................................................................... 66

3 Architecture Service Characterization 67
3.0.1 Chapter Organization............................................................................................................ 70

3.1 Platform Characterization................................................................................................................... 70
3.1.1 Characterization Requirements............................................................................................ 71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

i i i

3.2 Extraction of Platform Characterization Data ............................................................................... 72
3.2.1 Data Extraction R equirem ents..............................................................................................73

3.3 Example Platform Characterization.................................................................................................. 75
3.4 Organization of Platform Characterization D a ta .............................................................................78

3.4.1 Data Categorization ............................................................................................................. 78
3.4.2 Data Storage S tructu re .......................................................................................................... 79

3.5 Integration of Platform Characterization and Architectural Services......................................... 80
3.5.1 Sample Annotation S em antics..........................................................................................  82

3.6 Conclusions....................................................................................................................................  83

4 System Level Service Refinement 85
4.0.1 Chapter Organization.......................................................................................................... 87

4.1 Background and Basic D efinitions..............................................................................................  87
4.1.1 State Equivalence................................................................................................................  88
4.1.2 Trace Containm ent............................................................................................................. 89
4.1.3 Synchronized Parallel C om position ................................................................................. 89

4.2 Related W o rk ..................................................................................................................................... 91
4.3 Event Based Service Refinem ent......................................................................................................97

4.3.1 Proposed Methodology....................................................................................................... 98
4.4 Interface Based Service R efinem ent..............................................................................................113

4.4.1 Proposed Methodology.........................................................................................................114
4.5 Compositional Component Based Service Refinement................................................................. 132

4.5.1 Proposed Methodology.........................................................................................................132
4.6 Conclusions.......................................................................................................................................138

5 Design Flow Examples 140
5.0.1 Chapter Organization............................................................................................................ 142

5.1 Characterization Aided Fidelity Example: M otion-JPE G ...........................................................142
5.2 Service Aided Mapping Modularity Example: H.264 Deblocking Filter ..................................144

5.2.1 Application D eta ils ............................................................................................................... 146
5.2.2 Mapping D e ta i ls .................................................................................................................. 147
5.2.3 Design Space Exploration R esu lts ......................................................................................150

5.3 Architecture Platform Refinement Example: SPI5 Packet Processing........................................ 154
5.3.1 Application Parameters.........................................................................................................155
5.3.2 Architecture P aram eters ......................................................................................................155
5.3.3 Refinement Based Design F l o w ......................................................................................... 157
5.3.4 Platform D evelopm ent......................................................................................................... 157
5.3.5 Metropolis M o d e ls .........................................................................................................162
5.3.6 R e s u lts .................................................................................................................................. 163

5.4 Communication Subsystem Refinement Example: FLEET Communication Structure . . . .  166
5.4.1 Communication L ib ra ry ......................................................................................................166
5.4.2 Verification Process............................................................................................................... 170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

iv

6 Conclusions and Contributions 174
6.0.3 Chapter Organization............................................................................................................175

6.1 B en efits .............................................................................................................................................. 175
6.2 Disadvantages.....................................................................................................................................176
6.3 Future W ork ........................................................................................................................................177

6.3.1 In teg ra tio n ........................................................................................................................... 178
6.3.2 Formalism ........................................................................................................................... 178
6.3.3 E x ten sio n s........................................................................................................................... 179

Bibliography 180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

V

List of Figures

1.1 Overall EDA Revenue Growth and EDA Design Segment Growth [R ic05]............................. 2
1.2 “Methodology Gap” Challenge in EDA .....................................................................................  3
1.3 Global Embedded Systems Market [R av 0 5 ]...............................................................................  7
1.4 Semiconductor Design Cycle Time Decline [G ar05a]...............................................................  7
1.5 Technological SoC Heterogeneity [Don04]..................................................................................  7
1.6 Device Component and Communication Heterogeneity [Int06b] .............................................  8
1.7 Growing Gap Between Device Capacity and Designer Productivity [Int99].............................  10
1.8 Time to Market Revenue Consequences [IB M 0 6 ]......................................................................  11
1.9 Platform-Based Design Methodology [A lb02]............................................................................  14
1.10 Metropolis Design Environment and O rganization...............................................................  15
1.11 Makimoto’s Wave and Programmable Devices [TsuOO]............................................................  17
1.12 Naive Design F lo w ........................................................................................................................  22
1.13 Proposed Design F l o w ......................................................................................................................24

2.1 Proposed Service Style Versus Existing Service Styles .................................................................27
2.2 System Level Architecture Modeling in the Proposed F lo w ...........................................................28
2.3 Architecture Platform Composition and C re a tio n .......................................................................... 29
2.4 Architecture Service Taxonomy ......................................................................................................29
2.5 Composing Architectures Using Services ...................................................................................  37
2.6 Metropolis Process Example C o d e .........................................................................................  38
2.7 Metropolis Medium Example C o d e .........................................................................................  38
2.8 Metropolis Quantity Manager Example C ode.......................................................................... 39
2.9 Metropolis State Media Example C o d e ..................................................................................  39
2.10 Metropolis Port Interface Example C o d e ................................................................................... 40
2.11 Metropolis Architecture Netlists ................................................................................................41
2.12 Graphical Metropolis Architecture Representation................................................................... 42
2.13 Architecture Service Model Proposal in Metro I I ...................................................................... 44
2.14 Architecture Extensions for P reem ption ......................................................................................... 45
2.15 Architecture Extensions for M apping................................................................................................48
2.16 Metropolis PowerPC M odel.....................................................................................................  53
2.17 Metropolis MicroBlaze Model ............................................................................................... 55
2.18 Metropolis Synthetic Master/Slave Model ................................................................................56
2.19 Metropolis PLB M o d e l ............................................................................................................... 57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

vi

2.20 Metropolis OPB M o d e l ................................................................................................................58
2.21 Metropolis BRAM M o d el......................................................................................................... 60
2.22 Metropolis Quantity Manager M o d e l.....................................................................................  62
2.23 FLEET SHIP A rchitecture................................................................................................................63
2.24 FLEET Services C rea te d ...................................................................................................................65
2.25 Automatic Xilinx MHS Extraction ...................................................................................................66

3.1 Transcending RTL Effort with ESL Design Technologies.............................................................68
3.2 Characterization of Architecture Services in the Proposed Design F low ........................................69
3.3 A Design How for Pre-characterizing Programmable Platforms................................................... 74
3.4 Combo Systems Resource Usage and P erfo rm ance ...................................................................... 76
3.5 PowerPC System Performance A n a ly sis ......................................................................................... 77
3.6 Characterized Data Organization P roposal..................................................................................  81
3.7 METROPOLIS Sample Annotation Semantics Using Characterized D a t a ................................ 83

4.1 System Level Service Refinement in the Proposed Design H o w ................................................  86
4.2 METROPOLIS Style Refinement E x a m p le ..................................................................................  94
4.3 Event Based Refinement P ro p o sa l...............................................................................................  99
4.4 Vertical Refinement Illustration in METROPOLIS ........................................................................101
4.5 Horizontal Refinement Illustration in METROPOLIS.....................................................................104
4.6 Macro andMicroProperty Relationships........................................................................................I l l
4.7 Event Petri Net E x am p le ................................................................................................................. 114
4.8 Interface Based Refinement Proposal.............................................................................................. 115
4.9 Refinement Domains in Interface Based Refinement.....................................................................118
4.10 Metropolis Code Exam ple...........................................................................................................120
4.11 Resulting CFA for Code E x a m p le ................................................................................................. 120
4.12 CFA Visual Representation..............................................................................................................122
4.13 CFA FSM Representation.................................................................................................................123
4.14 SIS Commands and EXLIF Requirements for FORTE H o w ........................................................ 128
4.15 Surface Refinement Hows for Me t r o po l is ................................................................................. 131
4.16 Strict Transition R efinem ent...........................................................................................................136
4.17 Stuttering Transition Refinem ent.................................................................................................... 136
4.18 Lack of t-D ivergence....................................................................................................................... 136
4.19 External Non-Determinism Preservation........................................................................................136
4.20 .fts for Abstract Consumer L T S ....................................................................................................... 137
4.21 .fts for Refined Consumer L T S ....................................................................................................... 137
4.22 .inv for Consumer L TSs.................................................................................................................... 138
4.23 .sync for Producer/Consumer L TSs................................................................................................. 139

5.1 MJPEG Architecture Topologies in Me t r o p o l is ........................................................................143
5.2 Macroblock and Block Border Illustration for H.264 Deblocking F ilte r..................................... 146
5.3 Deblocking Filter Pseudo C o d e ....................................................................................................... 147
5.4 Decomposition of GetStrength F unction ........................................................................................148
5.5 Decomposition of EdgeLoop F unction...........................................................................................148
5.6 Mapping a Functional Model onto an Architectural Model for H.264 ......................................  149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

vii

5.7 H.264 Functional Topology Mapping C an d id ates........................................................................150
5.8 M e t r o p o l is  H.264 Simulation Results for All Candidate Topologies..................................... 151
5.9 M e t r o p o l is  H.264 Simulation Results for Various FIFO S iz e s ...............................................152
5.10 M e t r o p o l is  H.264 Accuracy Versus FPGA Implementation ..................................................154
5.11 Successive Platform Refinement Methodology.............................................................................. 158
5.12 Platform Development for S P I -5 .....................................................................................................159
5.13 M e t r o p o l is  Architecture Model for Platform 2 . 2 .....................................................................163
5.14 Sample Control Flow Automata for Abstract and Refined FIFO S cheduler..............................164
5.15 FIFO Occupancy Data for Platform 2.1 and 2 . 2 ..........................................................................165
5.16 LTS Communication Example #1 for F L E E T .............................................................................. 167
5.17 LTS Communication Example #2 for F L E E T .............................................................................. 168
5.18 LTS Communication Example #3 for F L E E T .............................................................................. 169
5.19 FLEET System Architecture Service Refinement Opportunities................................................ 170
5.20 LTS for Entire FLEET System Level Service M o d e ls ................................................................ 172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

List of Tables

1.1 Relationship Between Factors, Solutions, Supporting Techniques, and Outcomes ................. 5
1.2 Characteristics of Programmable Platforms ................................................................................ 18
1.3 Programmable Platform Technology Classification ...................................................................  18
1.4 Example Programmable Platform Architecture Classifications ................................................  19
1.5 Horizontal/Vertical Axis Classification Example [PatOl] .......................................................... 19
1.6 Contributions of this Thesis................................................................................................................ 23

2.1 Comparison of Architecture Service Modeling Approaches......................................................  34
2.2 PowerPC store instructions............................................................................................................  54
2.3 PowerPC load in structions............................................................................................................  54
2.4 PowerPC Service Performance Estimation S u m m a ry ....................................................................54
2.5 MicroBlaze Service Performance Estimation S um m ary .................................................................55
2.6 PLB Bus Service Performance Estimation Summary ................................................................ 58
2.7 OPB Bus Service Performance Estimation S u m m a ry .................................................................... 59
2.8 Memory Service Performance Estimation Sum m ary....................................................................... 61

3.1 Performance Characterization T radeoffs.......................................................................................... 71
3.2 Example CoreConnect Based System Permutations for Characterization.....................................75
3.3 Non-linear Performance Observed in PPC S y s te m s ....................................................................... 77
3.4 Sample Simulation Using Characterization D a ta ..............................................................................79

4.1 Refinement Verification Related Work Classification ................................................................  92
4.2 Potential Vertical Refinement Event Traces .................................................................................. 101
4.3 Potential Horizontal Refinement Event T races ............................................................................... 104
4.4 Resource Utilization Event A nalysis ...............................................................................................106
4.5 Latency Event Analysis.....................................................................................................................107
4.6 Asymptotic Analysis of Surface Refinement F lo w s ................................................................... 132

5.1 MJPEG Encoding Simulation Performance Analysis .................................................................. 144
5.2 H.264 Performance and Cost Results for All Topologies............................................................... 153
5.3 Example of SPI-5 Data Generation Using the Architecture and Application Parameters . . . 156
5.4 SPI-5 Application Parameter Interaction.........................................................................................160
5.5 Traces from FIFO Scheduler C FA s..................................................................................................165
5.6 FLEET LTS States and Transitions..................................................................................................173

with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Acknowledgments

I would first like to thank my advisor Alberto Sangiovanni-Vincentelli. Not only for his support in helping 

me to complete this thesis (and by implication my graduate student career), but also for his mentorship, 

advice, and leadership. As I go forward in my career I will forever benefit from our interaction and I hope 

that I can be an example to other students some day as he was to me.

Naturally I need to acknowledge all the wonderful fellow graduate students I have worked with 

over the past 6+ years while at Berkeley. In particular Abhijit Davare, Qi Zhu, Trevor Meyerowitz, Alessan­

dro Pinto, Guang Yang, Mark McKelvin, Donald Chai, Matt Moskewicz, and Will Plishker. I enjoyed our 

many interactions both academic and otherwise. I look forward to when our paths cross again. Best of luck 

in all your future endeavors.

Additionally, although not listed explicitly here, all the residents of the Donald O. Peterson (DOP) 

Center (Alberto’s group in particular), many other EECS graduate students, and Berkeley students in general 

were a pleasure to spend time with. I wish them all the best not only in their studies but in all aspects of 

their life. Hopefully we will one day realize what an honor it was to study at a place like Berkeley. It is 

impossible to list everyone important to me here. In the event of an omission, know that you are still in my 

heart.

As a UC Berkeley graduate student I have had the pleasure of working with some of the best 

researchers in the world. My discussions with Ivan Sutherland, Yoshi Watanabe, Shinjiro Kakita, Samar 

Abdi, Felice Balarin, Luciano Lavagno, Marly Roncken, John Moondanos, Jason Cong, Adam Donlin, 

Patrick Lysaght, John Wawrzynek, Dan Garcia, Edward Lee, and David Patterson were truly inspirational 

and I am a better person as a result of our interaction. Thanks for the doors you opened and continue to open 

for me both in terms of my career and intellectually.

As every researcher knows, nothing gets done without a tremendous support staff. The Berkeley 

staff and administrators such as Sheila Humphreys, Colette Patt, Ruth Gjerde, Mary Byrnes, Beatriz Lopez- 

Flores, Loretta Lutcher, and Carla Trujillo gave Berkeley a human touch and on some level they are the 

reason that I came to Berkeley. They are extremely dedicated folks and a true asset to the university. Thanks 

for everything!

While at Berkeley I was involved in various student groups such as BGESS, LAGSES and HKN. 

Fellow members of these groups such as Noaa Avital, Kofi Boakye, Nerayo Neclemariam, Lisa Angus, 

Fabian Beltran, Esther Zeledon, Rey Guerra, Hakim Weatherspoon (Makda and the kids too), Rob Crockett, 

and Greg Lawrence provided the extra laugh or pat on the back that made all the difference.

A number of companies have supported me throughout the years as well. Intel in particular has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

X

been amazing providing me with 4 internships and two fellowships. They gave me a chance when I was 

a 20 year old sophomore with little experience. Without this co-op experience I would not have had the 

confidence to know that I could be a successful engineer. Xilinx and Cypress semiconductor as well have 

been open to my research and supported me during internships and provided me with equipment during my 

time as a grad student. Cadence Berkeley Lab was also vital in my early development as a researcher.

Naturally I am indebted to other my other readers as well. Prof. Jan Rabaey’s and Prof. Lee 

Schruben’s participation in both my qualifying exam as well as the thesis process in general was much 

appreciated and I hope that you both found the process both educational and interesting. Best of luck in all 

your future goals both personal and academic. A special thanks to Jan for dealing with my crazy “signature 

issues”.

I want to thank the various students that I mentored during my time at Berkeley as well. Murphy 

Gant, Rhishi Limaye, Alex Elium, Jue Sun, and Rodny Rodriguez all helped me to learn what I do well and 

what I need to work on regarding my teaching and mentoring skills. Aspects of our collaborations are part 

of this work! I hope you learned one half of what I learned from you all. Also my time mentoring Iyibo 

Jack from the University of Washington was extremely beneficial as well.

As any student will tell you, a strong networks of friends is vital to complete any PhD program. 

My undergrad crew of Dale Winling, Neel Varde, Chris Burke, Jake Montgomery and Ryan Owen gave me 

a reason to look forward to August for the past 6 years (one day it will be Mock 10!). Of course, Steve 

Berke, Moses Morales, and Nils Hernandez have been my “California peoples” since 1998. Who would 

have thought almost ten years later we would still be in touch. Patrick Collins opened up my eyes to a lot of 

things in life and just plain showed me how to relax a little. I can’t think of a better roommate in the world 

and congratulations on the engagement. “That serum is raw”!

Over the past 11 years of my college experience, I have far too often had to put school ahead 

of my family. I hope to remedy this in the future. Mom and Dad, thanks for instilling in me the values, 

perseverance, and wisdom needed to complete my studies. Diana, Luke, and Kate, please keep following 

your own dreams and know that while I have achieved some measure of success, it pales in comparison to 

what you can achieve. You all are so talented. To Matt, Alyson, and the boys, I look forward to establishing 

a better relationship with you all as I transition into my “adult life” as a married man. I miss you all, and 

can’t wait to see you all back in Michigan!

Finalmente tengo que decirle algo a la persona mas importante en mi vida. Erika, tu eres la razon 

por la que me despierto en las mananas y quiero mejorarme. La razon por la que cuando no quiero continuar, 

me doy cuenta que la vida es mucho mas que la ingeniera y que todo va a estar bien contigo. Gracias por tu 

paciencia, amor, y amistad.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1

Chapter 1

Introduction

“The perfect computer has been developed. You just feed in your problems and they never come 
out again.” - Al Goodman

T h e  Electronic Design Automation (EDA) industry is currently experiencing a slow down in 

growth. This slow down ranged from 1% [Jay05] to -0.6% [Gai05b] growth in 2005 and only 3% [Jay05] 

growth in 2006. This data is down from a growth spike of 7.6% in 2001 [Lau02]. In order to counteract 

this slowdown, companies (both established and new) are looking to exploit new business opportunities. 

In previous years, tools were able to make incremental improvements to their approaches and designers 

were able to use existing and traditional design flows to produce products successfully (on time and at a 

profit). The success of these small improvements was able to sustain growth. Many analysts feel that this 

incremental process will not be possible in the future [Peg06]. A change in the EDA industry will have to 

occur for this segment to grow and thrive. This change must be systematic and across the entire industry in 

order to be truly effective. Designers are going to have to shift to a new way of not only designing systems 

but also to new ways of thinking about the design process.

One of these new business opportunities is in Electronic System Level (ESL) design tool and 

methodology development. According to the International Technology Roadmap for Semiconductors (ITRS) 

in 2004 [Int04b] ESL is defined as “a level above RTL including both HW and SW design”. ESL is defined 

to “consist of a behavioral level (before HW/SW partitioning) and architectural level (after HW/SW parti­

tioning)” and is claimed to increase productivity by roughly 200K gates/designer-year. The ITRS states that 

ESL will produce an estimated 60% productivity improvement over what they call “intelligent testbench” 

approaches (the previously proposed ITRS electronic system design improvement). While these claims 

cannot be verified as yet and do look quite aggressive, most agree that the overaching benefits of ESL are to:

•  Raise the level of abstraction at which designers express systems;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2

•  Enable new levels of design reuse;

•  Provide for design chain integration across tool flows and abstraction levels.

As a direct result of ESL tool introduction, EDA growth is predicted to be 22% [Ric05] in 2007! 

Figure 1.1 shows not only the impact ESL will have on increasing EDA growth in the future (in terms of 

overall revenue projections), but it also shows how ESL tools are predicted to rival RTL tools (Register 

Transfer Level; usually specifying a relatively low abstraction level) in terms of revenue potential. This 

trend is very important as RTL is the current design benchmark in EDA.

Millions o< Dotlws

$ 3 , 7 2 4  S 3 . 8 3 7  S 3 , S U B  5 3 , 8 3 3  $ 3 9 7 0

22% Growth 
for 2007

^^85,285 
5 4 , 3 1 0

"57485

$ 0 , 3 3 0

2001 2002 2003 2004 2005 2006 2007 2006 2009

Gartner Dataquest projections of 
EDA industry revenue

Millions ot Dollars 
$ 1 , 5 0 8  3 ~

»1*» -
$1,108 Gate Level 

! i £  j \  RTL

1 4 0 0  | -

$290 f ~'
$8 I

• CXttrnte %«mw Level
Gartner Dataquest projection 

of ESL revenues

Figure 1.1: Overall EDA Revenue Growth and EDA Design Segment Growth [Ric05]

ESL methodologies and tools are of increasing interest because they specifically look to exploit the 

“design gap” experienced by current design flows. More accurately this should be termed a “methodology 

gap” which exists between old design methodologies (i.e. RTL) and new design methodologies (i.e. ESL). 

Figure 1.2 presents a qualitative graph relating design complexity to designer productivity with both RTL 

and ESL design methods. Today, most designers work with RTL design tools and languages (VHDL and 

Verilog for example). They find themselves in the “methodology gap” where the system they are trying to 

create exceeds the capabilities of their design environment. This is not to say that the methodology gap 

cannot be crossed. On the contrary, the gap can be overcome with existing design methods but only at 

a significantly increased cost (both financially and in designer effort). Existing RTL design methods will 

continue to be employed until the additional cost of design overwhelms the commercial viability of the final 

design. This “maximum tolerable design gap” as shown in Figure 1.2 varies per technology, per market 

segment, or even per product and is always present at some level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3

£o
Methodology

Gap
w
v>c(0

Max. Designer 
Productivity at ESLH

£Xa
Q.
Eoo
cs>
</>
©Q

Maximum Tolerable 
Design Gap

Design Gap
Max. Designer 

Productivity at RTL

Today Time

Figure 1.2: “Methodology Gap” Challenge in EDA

A transition from RTL to ESL is required to completely overcome the “methodology gap”. A 

transition must occur since it is well accepted that design complexity will continue to increase (reflected 

in the continuance of Moore’s Law). Today, the design community is approaching a point of inflection 

between the two methods - the rate of ASIC design starts in recent years has remained flat while implemen­

tation/programmable technology’s growth has continued to trend upwards [Gar08]. An important question, 

therefore, is “what limits the widespread adoption of ESL by the majority of designers?”. A simplistic an­

swer is that ESL design methods, tools, and languages are simply not mature enough to convince designers 

to risk traversing the gap between the two methodologies. To further complicate the answer, we must respect 

that ESL methods must tackle multiple design problems. It is ultimately the design projects itself which in­

fluences the relative importance of each problem. Therefore, a complex compromise must be struck between 

the ESL vendors who create a set of tools and the system designers who must work in ESL environments.

Because of the potential to bridge the “methodology gap”, ESL is being widely adopted and there 

have been a number of industrial tools and academic tools created to be ESL based solutions. While this 

thesis will not cover the entire space of these tools or provide a taxonomy of these approaches, [Dou06c] 

does provide a comprehensive taxonomy and the reader is invited to examine this work. That taxonomy 

exposes the fact that there are many contributions. Each approach attempts to solve a variety of design 

problems. However, there is by no means a unified view of how to best attack the forces driving ESL de­

velopment. Fortunately there are a number of design scenarios which ultimately dictate which methodology 

is employed. A major contribution of that taxonomy is that it clearly demonstrates that all tools can be 

categorized around three orthogonal design aspects:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4

Definition 1.0.1 Functionality - this is "what” a system does. This can also be considered the application 

the design implements. Other common terms for this area are application domain or behavior.

Definition 1.0.2 Architecture - this is "how” a system carries out its operation. This can also be consid­

ered the services the system provides. Other terms for this area are platform components or services. Note 

that this can be traditional HW ASIC components, programmable processing engines, as well as general 

purpose processors (GPPs) capable o f running software. All o f this development is subject to abstraction in 

which case architecture services could be anything from logic gates to ISA instructions. The development 

of architecture service models in this area is the focus of this thesis.

Definition 1.0.3 Mapping - this is the process o f assigning functionality to architecture (behavior to ser­

vices). Often this is called binding as well and is traditionally seen as part o f the synthesis process. This 

an assignment between behaviors in the functional model and services in the architectural model. Mapping 

can be “many-to-one”. This allows "many” functional behaviors to be assigned to “one” architectural 

service. For example a DCT and FFT behavior can be mapped to a single abstract service dealing with 

signal processing.

There is a great deal of work related to each of these three areas as was shown in the taxonomy 

work [Dou06c]. Often ESL tools will fall into one of these categories only or perhaps combinations. The 

areas themselves will be touched on more specifically in Section 1.2 when System Level Design (a method­

ology within ESL) is described in more depth. It should be pointed out again that this thesis in general will 

focus on architecture service model development for ESL. This thesis will demonstrate how embedded 

system architecture service models can be created and how to formally verify properties of these models as 

it relates to refinement.

At this point is should be made very clear that this work is of interest since in order to legitimize 

ESL and to continue its adoption, architecture service modeling will need to be provided in such a way that 

various desired ESL characteristics attributed to abstraction can be maintained while achieving performance 

goals associated with RTL. Specifically this thesis will:

Demonstrate that architecture service modeling in system level design (SLD) can allow abstraction and 

modularity while maintaining accuracy and efficiency.

Abstraction allows the system to be described early and at a reasonable cost but it also casts a 

shadow of doubt over the accuracy of performance analysis data. Since the data gathered during simu­

lation guide the selection of one system architecture over another, the veracity of data recovered from ESL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5

performance analysis techniques with respect to the system feature being investigated must be considered 

carefully by the designer. Fear of inaccuracy in ESL performance analysis is a major impediment to the tran­

sition from RTL to ESL. Preventing this inaccuracy is paramount for ESL acceptance and legitimacy 

and is the major goal of this thesis.

Modularity encourages reuse, localizes system functionality, provides more system observability, 

and helps to manage complex system development. However modularity can often be at odds with sim­

ulation efficiency. Overheads often associated with modularity may decrease simulation speed or enforce 

rigid syntactic or semantic requirements on the designer. If a design environment is to be widely accepted it 

must remain equally efficient (if not more so) as the current design environments it is replacing for the same 

amount of design productivity gains (both in terms of design time saved and design space explored). Pre­

venting this inefficiency is also paramount for ESL acceptance and legitimacy and is partner to accuracy 

as a goal of this thesis.

To these ends, the goals of this thesis are outlined in Table 1.1. This table shows how environmen­

tal and industrial factors (Heterogeneity and Complexity) lead to the solutions (Modularity and Abstraction) 

that a ESL methodology should achieve. This thesis provides the techniques listed to achieve these goals 

and produce the stated outcomes (Accuracy and Efficiency). This is the central proposition of all of the work 

contained in this thesis.

Factor Solutions Supporting Techniques Outcomes
Heterogeneity Modularity Event Based Architecture Service Modeling (Chapter 2) 

Architecture Service Characterization (Chapter 3)
Accuracy

Complexity Abstraction Architecture Service Refinement Verification (Chapter 4) Efficiency

Table 1.1: Relationship Between Factors, Solutions, Supporting Techniques, and Outcomes

1.0.1 Chapter Organization

The rest of this introductory chapter will provide a more in depth analysis of the current industrial 

design environment and this thesis’ contributions toward addressing these issues. First in Section 1.1, a 

more in-depth discussion of ESL’s (and hence this thesis’) motivating factors will be covered. Section 1.2 

will introduce the reader to the System Level Design methodology within ESL and more specifically to 

the METROPOLIS design environment which will be used primarily to demonstrate the techniques outlined. 

Section 1.3 will introduce the reader to programmable platforms and the powerful role they will play in 

architecture service modeling. Finally Section 1.4 will introduce the contribution this thesis makes to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6

area of ESL in the form of a complete design flow. It will outline a naive design flow approach and close 

the chapter with the improved proposed design flow which will be discussed throughout this thesis.

1.1 Motivating Factors

There is a great deal of financial commitment and human resource effort involved in EDA. In 

2005 the revenue in EDA was 3.9 billion dollars and was 4.3 billion dollars in 2006. It is projected as 

being as high as 7.4 billion dollars in 2009 [Ric05], According to [Rav05] the embedded hardware market 

(which uses EDA tools) will reach $78.7 billion in 2009 assuming an aggregate 14.2% growth rate. Figure

1.3 illustrates this tremendous growth of embedded integrated circuits, software, and printed circuit boards. 

This information clearly shows it is a very costly proposition to begin the process of shifting the entire 

industry to a new design methodology. It is not done on a whim or due to passing marketing pressures. The 

slow down in growth mentioned previously in the introduction however has started the migration process 

to ESL and it appears that there is no turning back. The migration to a new methodology is very cognisant 

of and concerned primarily with four key factors. The first factor is heterogeneity in device types, systems 

fabrics, and technologies. The second factor is complexity both in application and architecture designs. The 

third factor is time to market pressures. In semiconductor design for example, the design cycle times have 

decreased 33% since the early 1990’s [Gar05a]. A sampling of design cycle time decline is shown in Figure 

1.4. This trend means that designs must avoid long development cycles and developer iterations in order to 

see profits necessary to justify new product development. The final factors are involved in nanometer era 

design effects and are not discussed in this thesis (but mentioned since they deserve recognition). This thesis 

focuses in next three sections on the first three factors in more detail. These factors are what will lead to the 

solutions outlined in Table 1.1 and ultimately the techniques upon which this thesis is based.

1.1.1 Heterogeneity

Heterogeneity is defined as “the quality or state of being heterogeneous” where heterogeneous is 

defined as “consisting of dissimilar or diverse ingredients or constituents” [Mer06], In the case of embedded 

system design and electronic system design in general, there are primarily two broad classes of heterogene­

ity. The first class deals with the various technologies integrated on a printed circuit board (PCB) or even 

the device die itself. Figure 1.5 shows “Existing and Predicted First Integration of SoC Technologies with 

Standard CMOS Processes”. Notice by the release date of this thesis (Spring 2007), all 11 of the presented 

technologies have been introduced. These technologies range all the way from basic CMOS logic to chem­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7

20,000

b Embedded Software m Embedded ICs □ Embedded Boards
________(Left)______________ (Center)___________ (Right)

Figure 1.3: Global Embedded Systems Market 
[Rav05]

Figure 1.4: Semiconductor Design Cycle Time Decline 
[Gar05a]

ical sensors and electrobiological components. In order to make sure that these devices function properly, 

models must be created which can capture the complex interactions caused by such diverse combinations. 

As nano-technology continues to be developed [Cha03] it is clear that integration heterogeneity issues will 

only continue to become more complex and critical.

> ,  Logic 
O) SRAM 

5  Flash 
O  E-DRAM 

CMOS RF 
FPGA 
FRAM 
MEMS 

Chemical Sensors

O
O

I -

Electro-Optical
Electrobiological

06 0898 99 00 01 02 03 04

Year Introduced
10 12

Figure 1.5: Technological SoC Heterogeneity [Don04]

The second type of heterogeneity is inter-device heterogeneity. This description speaks to the 

many different types of individual components that are often assembled in a design (often on a single die). 

Figure 1.6 shows the Intel PXA270 System on a Chip (SoC). This integrated circuit is used in such devices 

as the Mypal A730 Personal Digital Assistant. This PDA has many state of the art features and is equipped 

with a digital camera and a VGA-TFT display. The primary issue in these types of systems is making sure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

that the communication between individual components can be sufficiently captured during simulation so 

that not only system functionality can be verified during design but also that debugging is manageable. One 

must be able to isolate communication from computation, deal with different data types, and different timing 

domains. Also it is important that each component be designed separately so that various product families 

can be developed with these components to service markets with different performance, power, and price 

requirements.

Various Communication Types 
Various Component Types

(SRAM, Quick C apture Interface)

IC0_IFsoighwij

80SAU

y»efoUSS2.H 038 0t[iaSuMl

litem*
i

STOiJAST

6s IJMl

HPOWER
SUPPLY

Mum
System on a Chip (SoC): Block Diagram of the Intel PXA270

Figure 1.6: Device Component and Communication Heterogeneity [Int06b]

Heterogeneity is a factor that is not only difficult to manage but is increasingly becoming required. 

It is not practical or possible to have homogeneous systems for today’s applications and in many cases the 

presence of heterogeneity may be seen as a design’s strength. From this key design factor comes the first 

solution of this thesis: Modularity.

Definition 1.1.1 Modularity - the ability to define clearly the boundary between interacting components 

both in terms o f their communication, computation, and coordination. At these boundaries, components 

should be able to be tested and verified for correct functionality. In addition, there should be rules re­

garding how systems are composed o f these components and how those boundaries can be changed during 

refinement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

9

If a design is modular, one can test its components in isolation and will allow for reuse. Modu­

larity allows communication issues to be isolated from computation issues as well. Throughout this thesis, 

modularity will be emphasized as it is a critical contribution in the design of system level architecture 

service simulation and verification techniques. Modularity will be constantly monitored in the context of 

maintaining an efficient simulation environment.

1.1.2 Complexity

The second factor influencing the development of system level design methodologies is the in­

creasing complexity seen both at the application level as well as how many devices can be introduced on 

a die. Moores law fuels much of this progress on the technology side but applications are increasingly 

requiring more memory and compute power. Multimedia applications are an excellent example of this phe­

nomenon. IBM’s cell processor [Jim05] (an example of a cutting edge architecture design) is prominently 

featured in the Sony Playstation 3 and the most sophisticated devices in PCs today are related to graphics 

processing for videogames [Nol05]. Figure 1.7 provides a very clear illustration of the issues these com­

plexity trends introduce. One of these is the increasing complexity of designs as measured by the number 

of transistors present in a device. This figure shows a 58% per year compounded complexity growth rate. 

However, the productivity rate (as measured in transistors per staff month) is only increasing at a 21% com­

pounded growth rate. This growth rate mismatch leads to an increasing productivity gap (this manifests 

itself as the “methodology gap” discussed earlier). There is no inherent problem with the producvity gap. 

In theory this just means that all of the power of a device will not be realized. However in practice this gap 

leads to at least two side effects. The first effect is that in the quest to utilze all that complexity, designs end 

up taking more time to develop. This is due to the fact that new architectural innovations must occur in order 

to take advantage of the added silicon. In the case of general purpose processors for example, companies 

like Intel are no longer pursuing advanced superscalar techniques but rather looking a multi- and many-core 

devices. These designs bring with them a whole set of verfication, test, and design difficulties. In the event 

that productitvity can not keep pace it is very likely that design times will dramatically increase. This trans­

lates into lost revenue and lost opportunities for many companies. In order to prevent this, the second effect 

is seen. Companies often respond by increasing the number of employees to tackle this problem. This leads 

to more development costs which end up raising the cost of the device. It is also not clear that this is simply 

a manpower issue. It is possible that more manpower will only exacerbate the complexity and management 

problem. In the event that the market will not bare this increased cost either the employees cannot be hired

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

10

or companies are not as profitable. Often what this means is that only the largest companies are able to 

compete in this space and as a result creativity and competition are not promoted. Innovation cannot occur 

and the small companies which may be ideally placed to look at new ideas are not viable!

10.000
Potential Design Complexity and Designer Productivity

(Top) Logic Tr./Chip 
TrJS.M

Equivalent Added Complexity

(Bottom)

_,_„58%/Yr.compoundi 
Complexity growth rate

w  21%/Yr.-compoumted 
'  Productivity growth rate

100,000
7s10,000
H1,000 SO

u
"»

3 o100 CLc
10 CO or

1
a>
=fi

<

I *<
0.1 aS
0.01 o

s  O) ^  to ii) s  o> ^  n  in
CO CO 0) 0) 0) 0) 0> o o o
0> 0) 0 ) 0 )  0) 0 ) 0 )  o o o^  ^  r- r* t— ^  ^  fM CS M

Figure 1.7: Growing Gap Between Device Capacity and Designer Productivity [Int99]

As heterogeneity was coupled with modularity, the complexity factor is coupled with the solution 

of design Abstraction.

Definition 1.1.2 Abstraction - the addition o f system behaviors. A system is more abstract if it has more 

possible behaviors and less abstract if  it has fewer possible behaviors. Abstraction does not have to do 

with code size, complexity o f execution, or number o f “details”. Abstraction can be seen as a relaxation o f 

constraints which expands the space o f behaviors a system can exhibit. It is the process o f obscuring aspects 

o f the design in order increase the ability o f the designer to only consider those which help to develop a 

design at that particular stage.

Abstraction could be a set of transistors being represented as logic gates, a set of bus transactions 

being reduced to a IP interface, or the operation of a processor being a set of abstract services (add, divide, 

etc). Abstraction will allow more device resources to be utilized more easily but it must be tempered by 

the level of controllability, observability, and accuracy. Higher levels of abstraction allow design changes to 

most dramatically effect the overall design but a designer also has the least insight into how precisely the 

changes brought about this change. The inverse is true for less abstraction. What is needed is something 

with the best of both techniques. This thesis will show how abstraction can be achieved while maintaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

11

accuracy. Specifically maintaining relative accuracy or fidelity.

Definition 1.1.3 Fidelity - requires that all pairs o f corresponding measurements mi, m2  in a abstract 

model and p\, P2 on the actual implementation, hold m\ < m2 i f  and only ifp \ < P2 -

1.13 Time to Market

The first two factors, heterogeneity and complexity, were aspects of embedded system designs 

that were technology and application driven. The final factor, time to market pressure, is consumer driven 

and is in opposition to the other factors. Time to market is why a design method needs to be accurate and 

efficient. If it is not, there will be long iterations in the design and as a consequence release dates will slip. 

Figure 1.8 shows three markets described by what the industry norm is regarding time between subsequent 

product releases (fast, medium, and slow). These markets could represent digital consumer devices (PDAs, 

cell phones), set-top equipment (televisions, DVD players), and automotive industries respectively. The 

Y-axis is what percent of revenue is lost if you are N  months late (X-axis). While this is a fairly qualitative 

figure, the spirit of it remains. Essentially any longer than 12 months late is considered a product failure 

from a revenue standpoint. As little as 3 months late can be drastic as well (potentially losing as much as 

15% of the expected product revenue). The lesson learned here is that time to market windows are small 

and the financial cost of missing them is extremely high.

Digital Consumer Devices Set-Top Equipment Automotive 370/0 ° f  new digital 
—  products were late to

m
»
so
W)
§0
56
«
m
36
15

\  WkST T
MARKET ; ▼ ;

. V }  W C H iy  H U T  t v  I t n w i w t  I

MEDIUM SLO"
MARKET MARKET

■50%+ revenue 
loss when nine 
months late.

Three months late 
still loses 15%+ of 
revenue.

Year late effectively 
ends chance of 
revenue!

market!
(Ivo Bolens, CTO Xilinx)
Speaking @ UC Berkeley EE249

3 8 « 12 3 8 9 12 3 8 9 12
Months late to market

*Lost revenue *  R evenue reduction d o e  to  delay in getting new  products to  m a& ei + 
k*ss from  engineers being unable i* on news products

Courtesy: h ttp ://w w w .ibm .com

Figure 1.8: Time to Market Revenue Consequences [IBM06]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ibm.com


www.manaraa.com

12

Time to market issues cannot be ignored since it they are why companies cannot take an arbitrary 

amount of time to produce designs. Granted it is not the only factor calling for an efficient design process (for 

example it would not be cost effective to manufacture an arbitrary number of devices at any design process 

speed in order to weed out process errors) but it is nonetheless a very powerful factor and the underlying 

influence behind almost all EDA efforts (tool design by nature looks to speed up the design process since 

time is often equated with designer effort).

1.2 1st Focus: System Level Design

The beginning of this chapter discussed Electronic System Level (ESL) design and its increasingly 

important role in EDA. Often an approach within ESL concerned with specific system wide integration goals 

(reuse, modularity, formal techniques) is called System Level Design (SLD) [KurOO] (often ESL and SLD 

are used interchangeably). SLD allows for a designer to think of traditional software and hardware aspects 

of the design separately. Algorithms are decoupled from the elements which implement them. For the 

purposes of this thesis, system level design is going to refer primarily to the level of abstraction employed. 

Computation will take place at the granularity of function calls typically. Communication operations will 

be considered as transactions (as opposed to bit-level or register interactions).

Definition 1.2.1 System Level Design - a design methodology whereby the interactions amongst compo­

nents at an increased abstraction level are examined. Design is done taking the entire system into consider­

ation as well, not just individual components.

It is important to understand that SLD is a large design umbrella defined by a generic set of goals 

with a number of various approaches possible within ESL. In fact within ESL there are many industrial 

and academic offerings with claims to be members of the SLD community. In [Dou06c] (the taxonomy 

previously mentioned), over 90 tools and environments were categorized. The approaches differed by their 

ability to support (Functional modeling, (P)latform services, or (M)apping capabilities. Approaches could 

be combinations of these distinctions. If this thesis work is to use the terminology used in that source, then 

specifically it will examine an FPM approach. FPM approaches are attractive since this thesis investigation 

could be carried out in one unified environment. In particular this thesis will be focusing in on a particular 

style within ESL called, Platform-Based Design [Alb02], Platform-Based Design (PBD) is concerned with 

what is termed the orthogonalization o f concerns. These concerns are:

• Functionality (what something does) and Architecture (how it does it). For example multiplication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

13

itself is very well defined functionally. However, the architecture which implements it may be a 

series of adders or a dedicated multiplier. This separation goal is shared by a variety of other SLD 

methodologies.

•  Behavior (Semantics) and Performance Indices (Latency, Throughput, etc). Behavior defines how a 

device operates. A bus protocol is an example of a behavior. Performance is a cost of that behav­

ior. Bus transaction latency times (performance) are a function of many things not specified by the 

behavior (for example clock speed is not a behavior).

•  Computation, Communication, Coordination. How things compute should be separate from how they 

interact (communicate) with other aspects of the system, and both computation and communication 

should be separate from the scheduling mechanisms.

By keeping these issues separate, the now modular design allows for a smoother verification 

process, reuse, and abstraction. These are exactly elements that were stated as goals of this thesis!

In order to achieve these goals, PBD is a three stage process: top down application development, 

bottom up performance exposure, and defining a common semantic meeting point to explore functionality 

and architecture mappings. Figure 1.9 illustrates this methodology and provides the needed description.

An ESL tool using a Platform-Based Design methodology is METROPOLIS [Fel03]. As men­

tioned, M e t r o p o l i s  is an FPM (Functionality, Platform, and Mapping) ESL solution. It is developed at 

UC Berkeley and is available through the Gigascale Systems Research Center (GSRC). The design envi­

ronment is shown in Figure 1.10 along with its organizational structure in terms of primary and support 

activities. The beginning of a METROPOLIS design flow starts by describing either a functional model or 

architectural model in the M e t r o p o l i s  Meta-Model (MMM) language. Working at the MMQVf level to 

develop architecture service models will be the scope of the discussion in Chapters 2 and 3. From this 

user input, the Meta-Model compiler decomposes the description into an abstract syntax tree (AST). This 

AST can be fed into any number of backends in order to simulate the design, perform synthesis, or for ver­

ification tasks. The majority of this thesis is interested in using M e t r o p o l i s  for design space exploration 

(DSE). Chapter 4 will include a discussion of how backends can be used to verify refinements of architecture 

services.

Another E S L  tool using Platform-Based Design is M e t r o  II. Also an FPM based approach, it is 

the successor to M e t r o p o l i s . Primarily it looks to streamline M e t r o p o l is  and provide better support 

for heterogeneous IP import, cleaner separation of annotation and scheduling activities, and a three phase 

simulation engine. Chapter 2 will provide a proposal on how architecture service models may be modeled 

using this tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

14

Platform-Based Design Methodology
Top Down X ^ c a tio n S ^ X  Functionality

Refinement /  '
/Application Instance . _ .. .. ,  .. ...' — 1 Descnbes the functionality

of the design. Restricts
functionality a s  necessary
to make design less
abstract so  it can
physically be realized.

A common semantic domain 
in which the application and 
architectural space m eet 
Here mapping tradeoffs can 
be explored and potential 
performance estimations be 
examined.

Provides various architectural 
targets for implementation. 
These targets should allow 
performance exportation up 
to the platform for estimation.

Platform
Mapping

Platform 
Design Space 

Export

Bottom Up 
Exposure

System
Platform
(HW/SW)

Figure 1.9: Platform-Based Design Methodology [Alb02]

Definition 1.2.2 Design Space Exploration - the process o f looking at a variety o f designs and using the re­

sults o f simulation, verification, or other analysis methods to make decisions regarding which design should 

be selected, which modifications can be made to existing designs to increase performance, and observe 

potential design issues that may have been overlooked during specification. This process is done prior to 

committing to a particular design with the intention o f physically creating it or its prototypes.

Chapters 2 and 3 will discuss how models can be developed for DSE. Chapter 4 will utilize a 

backend for verification which be used in conjunction with simulation to make guarantees about design 

correctness during DSE. Chapter 5 will provide a number of case studies to demonstrate the applicability of 

the techniques proposed.

It should be noted that this thesis is independent of M e t r o p o l i s  or M e t r o  II. It is true 

that there are aspects of these environments exploited to achieve the goals outlined previously. However 

these can be applied to other tools as well. More specifically, a design environment with the following 

characteristics would also be able to take advantage of the techniques outlined by this thesis:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

15

1. Support fo r  multiple models o f computation - this thesis requires both tagged signal modeling seman­

tics as well as dataflow modeling.

2. Explicitly separate an architecture model’s behavior and how its operation is scheduled - this thesis 

requires this separation to meet its performance and reuse goals. The refinement formulation is also 

highly dependent on this distinction.

3. Event based synchronization - this thesis requires that elements which form architecture services be 

coordinated with events.

More specifics about METROPOLIS and METRO II execution and modeling will be covered in 

Chapter 2 and can be found in [Fel03] and [Abh07].

1. Architecture 
Service Modeling: 
Chapters 2 and 3 Leadership

Meta Model 
C o m p ile r

Mapping ArchitectureFunctioalityFront End3. Simulation
is the focus of __
all the work: ,
Case Studies { 
in Chapter 5 ,*

N___
Major Activities **

Abstract Syntax Trees

Verification
Back End NBack End 1 Back End 2 Back End 3

Support Activities

2. Refinement 
Verification: 

Chapter 4

Figure 1.10: METROPOLIS Design Environment and Organization

1.3 2nd Focus: Programmable Architecture Services

When having a discussion about creating abstract, modular architecture service models which 

are still efficient and accurate one must quickly determine what types of implementation devices one is 

going to consider. One could consider static architecture service models. A static architecture service model 

for the purposes of this thesis is one which has its functionality bound during manufacturing. This is the 

case when speaking about a General Purpose Processors (GPP) such as Intel’s Pentium 4 [Int06a] or ARM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

16

style processor [ARM06]. ASIC designs could also be members of this group. These devices are perhaps 

programmable at the ISA level (GPPs) but one cannot change the computation fabric or interaction between 

computation or communication units after fabrication. The are usually either very special purpose (ASICs) 

or very generic (GPPs). Often they have a high design cost but are often cheaper to manufacture and recoup 

that design cost in sales volume. At the other end of the spectrum are programmable architectures or plat­

forms (the term platform denoting a set of services which typically are not associated with traditional CPU 

architectures). A programmable platform is a system for implementing an electronic design. Examples of 

these are Platform FPGAs and ASIPs. These systems are distinguished by their ability to be programmed 

regarding their computation (functionality), communication (topology), or coordination (scheduling). Pro­

grammable platforms are increasing in use and popularity for several reasons: [Kui02], [AndOO]

• Rapid Time-to-Market - One can often eliminate fabrication time by using off the shelf parts. This 

also bypasses a large part of the verification time as well since parts are well understood and there is 

no post silicon verification phase.

• Versatility, Flexibility (increase product lifespan) - Design reuse within a programmable architecture 

family is often possible.

•  In-Field Upgradeability - Many devices are reprogrammable using as little as a personal computer 

or a portable flash memory card.

•  Performance: 2-100x compared to GPPs - Special purpose computation units can exploit spatial 

concurrency or dedicated hardware can be created.

Table 1.2 lists a set of characteristics that allow programmable platforms to achieve those advan­

tages. However they naturally have some disadvantages as well:

•  Performance: 2-6x slower than ASICs - Programmable architecture topology overhead related to 

programming the device may hurt performance. For example, FPGAs are unable to perform routing 

as efficiently as a custom ASIC due to its mesh like structure.

•  Power: 13x compared to ASICs - Programmable architecture fabric is not typically optimized for 

power although companies are starting to improve their power consumption dramatically.

Overall the strengths outweigh the weakness as both of the weaknesses are becoming less of an 

issue as technologies mature. Programmable Platforms often have a very regular device fabrics (FPGAs for 

example are famous for this). This regularity allows for advances in device technology (such as transistor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

17

scaling) to be taken advantage of with minimal design changes. An FPGA is able to double its computing 

capacity every 18 months with the same die size potentially. In fact, industry luminary Tsugio Makimoto of 

Sony Corporation has programmable platforms as a key extension of his now famous “Makimoto’s Wave”. 

Figure 1.11 illustrates this point. The wave demonstrates the observation that the electronics industry oscil­

lates between standardization and customization. Standardization is used to proliferate designs and enable 

new companies and designers to enter into the marketplace. Customization occurs as a means for innovation 

and to enter new market areas where standards are not in place. Standardization is able to take advantage 

of factors such as regularity, automation, and predictability. All of those factors are reasons why this thesis 

explores programmable architectures services (a standardized approach). Tool development by its very 

nature is most productive during the standardization cycle of the wave.

Makimoto’s Wave
Standardization

Memories,
Micro-Standard

Discretes
Program
mability

Custom I 77 
LSIs

Modeling 
focus of 
this work'y 7

Customization
Source Electronics Weekly, Jan 1991

Pros:
• Large Application Domain
• Allows for Automation
• Large Design Space 

Exploration Potential

Figure 1.11: Makimoto’s Wave and Programmable Devices [TsuOO]

Because of their increasing relevance and prevalence, programmable platforms are a natural tar­

get for ESL design flows. In addition, they directly target time to market issues. Also they often side step 

technology heterogeneity issues since they have regular design fabrics. Finally, they can be customized 

to directly address new complex applications. From a practical standpoint, if one were to create architec­

tural models of a programmable device, these models by definition could be used to represent a very large 

set of individual architecture instances (i.e. each configuration). By modeling the primitives of the pro­

grammable platform a very large design space can be easily created from a relatively small model set. 

However it is not enough to say that this thesis will focus on programmable platforms since this is still a 

broad classification. The discussion will now begin the process of narrowing down the focus within this 

space.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

18

To begin, the characteristics of programmable platforms are shown in Table 1.2. These charac­

teristics are intentionally vague and meant to contrast those not typically explored in static architectures. 

The architecture models to be described allow for all of these features as each is a very important aspect 

of a programmable platform. As mentioned this table highlights the strengths of programmable platforms 

especially when dealing with concurrency and distributed control.

Characteristic Description
Spatial Computation Data processed by spatially distributing the computations
Configurable Datapath Functionality and interconnection network of computational units is flexible
Distributed Control Units process data based on local control
Distributed Resources The required resources for computation are distributed throughout the device

Table 1.2: Characteristics of Programmable Platforms

Table 1.3 shows the wide range of programmable devices. As the table progresses, the level of 

abstraction increases as does the intended scope of the device (from component to whole system). For this 

thesis, FPGAs, SoCs, and Hybrid Architectures will be focused on. This thesis is presented purposefully 

device agnostic. However, the key issue here is abstraction (the granularity at which the device is modeled). 

This thesis is going to look at functional and transaction level models. Therefore it is inappropriate to 

talk about PLDs. In addition, analog issues will not be explicitly mentioned therefore Field Programmable 

Analog Arrays (FPAAs) will not be covered.

Device Description
Programmable Logic Device (PLD) PROMS, PLAs

Examples: Flash Memory Devices from Intel [Int04a]
Field Programmable Gate Array (FPGA) 
♦FOCUS of this thesis

Contains uncommitted configurable logic blocks (CLBs) 
Examples: Altera Cyclone FPGA [Alt04]

Field Programmable Analog Array (FPAA) Contains uncommitted configurable analog blocks (CABs) 
Examples: Anadigm AN10E40 [Ana04]

System on a Chip (SOC) 
♦FOCUS of this thesis

Static and reconfigurable components at function unit level 
Examples: Cypress PSoC [Cyp04]

Hybrid Architectures 
♦FOCUS of this thesis

Static and reconfigurable components at function and bit-level 
Examples: Xilinx Virtex II Pro [Xil02]

Table 1.3: Programmable Platform Technology Classification

Table 1.4 illustrates the various aspects which need to be considered when creating a model of a 

programmable architecture. The left column indicates the various aspects of programmable platforms that 

are of interest in a modeling framework. A description and example of each is provided in the right column. 

This thesis will be dealing with functional unit granularity and tight chip level host coupling. The other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

19

factors do not directly apply to this thesis. Reconfiguration methodologies are not directly discussed (but 

can be modeled still) and arbitrary memory organizations can be modeled.

Classification Description
Granularity Size of the smallest reconfigurable functional unit addressed by mapping tools

Tradeoff between flexibility and performance overhead
Examples'. CLB, ADC, ISA (bit level, function unit, program control)

Host Coupling Type of coupling to host processor
Loose System Level/Loose Chip Level/Tight Chip Level
Examples: Through I/O (SPLASH);
Direct communication (PRISM); Same chip (GARP, Chameleon)

Reconfiguration Methodology How the device is programmed
Examples: bit stream (serial, parallel); dynamic; partial

Memory Organization How computations access memory 
Examples: large blocks vs. distributed

Table 1.4: Example Programmable Platform Architecture Classifications

Finally, Table 1.5 shows the potential design levels (abstractions) upon which programmable de­

vices can operate. There are two axes. The left column is the vertical axis which represents abstraction. 

The other three right columns are the types of design element categories. This thesis will be concerned 

with both the Microarchitecture level and the Process/Systems level. System Level Design dictates that it 

only really makes sense to examine the levels above “Implementation”. RTL based design would be more 

concerned with “Implementation level” and its goal would be to integrate the ESL solution with a tool that 

could traverse this portion of the design flow.

Design Levels (Vertical Axis) Design Elements (Horizontal Axis)
Communication Storage Processing

Implementation Switches/Muxes RAM Organization CLB/IP Block
Microarchitecture *FOCUS Crossbar/Bus Register File Size 

Cache Architecture
Execution Unit Type 
Interpreter Levels

Instruction Set Architecture Address Size Register Set Custom Instructions
Process Architecture *FOCUS 
Systems Architecture *FOCUS

Interconnection Network Buffer Size Number/Types of tasks

Table 1.5: Horizontal/Vertical Axis Classification Example [PatOl]

In summary, this thesis will be concerned with modeling architecture services for FPGAs, SoCs, 

and Hybrid Architectures at the functional unit granularity with details present regarding the mi- 

croarchitecure and system level. Specific examples will be discussed regarding the Xilinx Virtex II Plat­

form FPGA [Xil02] (hybrid architecture) in Chapter 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

20

These sets of programmable platform categorizations were chosen since they are at the appropriate 

level of abstraction desired. Additionally, they are easily described as modular components. They are easy 

to characterize which will improve accuracy as well.

1.4 Thesis Contribution

At this point the reader should now be familiar with the items necessary to understand the back­

ground, goals, and context of this thesis. This final section will attempt to make very clear the contribution 

of this research. Thus far this chapter has established several things:

• Introduced Heterogeneity, Complexity, and Time-to-Market pressures as the motivating factors in 

this research. These factors must be addressed in order for EDA to move forward to new growth areas 

and develop new methodologies for its continued success.

•  Matched the design factors to the design solutions intended to resolve them (Heterogeneity to Mod­

ularity and Complexity to Abstraction).

•  Identified the outcomes that are desired: Accuracy and Efficiency and the ability to meet Time- 

to-Market demands. It is not enough to simply create abstract and modular designs without being 

accurate and efficiency. It is clear that ESL adoption is dependent on the ability to ensure these 

qualities.

•  Introduced METROPOLIS and METRO II  as the ESL, FPM, platform-based design approaches that 

will be used to explore these concepts. In the event the one does not uses these frameworks, the 

required constructs have been outlined as well.

•  Identified that Programmable Platform Architectures Services are going to be the focus of the 

architecture service modeling in the methodology to be described. Not only do these devices look 

to address the same concerns as ESL, but they also possess key characteristics which make archi­

tecture modeling at the system level more accurate and efficient. Creating one set of programmable 

components takes the place of creating a very large set of static components.

What now remains is to demonstrate how these contributions combine to create a design flow to 

accomplish the desired outcomes. What will be presented next are two approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

21

1.4.1 Naive Design Flow

Before presenting the approach to be elaborated on in this thesis, a naive approach will be pre­

sented as an example of how design is often done and to clearly illustrate the advantages of the proposed 

approach.

A typical simulation and synthesis design flow which minimally attempts to use ESL ideas (ab­

straction and modularity) may proceed something like this (Figure 1.12).

1. Create an abstract and modular architecture service design in a system level design environment. 

This will be accomplished in an environment supporting various models of computation and mapping 

strategies in the best case.

2. Estimated data is used to annotate the simulation. This data may come from best practices, back of 

the envelope calculations, data sheets, or area based timing information. It is from a set of simulations 

based on this data whereby a final design is chosen.

3. Once a design decision is made during design space exploration, one creates a “C” model (or equiva­

lently a high level language description which is sequential in nature) manually which should represent 

the abstract system. This is needed since the abstract system has no automated path to synthesis.

4. Create an RTL model manually from the “C model”. This is done since RTL has a path to synthesis 

and industry expertise exists with designers who routinely perform this transformation.

5. Finally from the “golden” RTL model create an implementation.

As Figure 1.12 shows, just because the initial design is abstract and modular it does not guaran­

tee accuracy or efficiency! In fact, one must take explicit steps to ensure such characteristics. Weaknesses 

are found in all areas of the naive design flow. This design flow is currently tolerated because the level of 

complexity in today’s designs is such that the methodology gap can be overcome with the iterations seen 

in this flow at a cost low enough to justify continuing this path. However, this will not be the case as the 

iteration time will grow and design times will shrink. Additionally the “length” of the iterations in terms of 

designer teams involved and processing steps will grow as well.

1.4.2 Proposed Design Flow

It is immediately clear that the naive approach is not acceptable and will not achieve the goals 

desired by the work in this thesis. The proposed approach improves upon the naive approach in the following 

ways:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

22

1. D esign S p ace Exploration

I G

Architecture Model

Abstract
Modular
SLD T o o ls

hOi
Estimated

Performance
Data

• D atasheets
• Expertise

3
■o
<D
3
(D
3
i f
Q)
i f^■1
O
3
«
Q)

■o

Bridge the Gap!!

"C" Model
2. S yn th esis

Manual
Disconnected
Inaccurate!

5o
EZ
oo

(0
Eo
3<
A
X

RTL "Golden 
Model"

Implementation
Platform

■L.___ !

Manual

Length,V Feedback

Inefficient
Miss Time to Market!

Figure 1.12: Naive Design Flow

1. The proposed flow replaces a generic, abstract modeling approach with a fundamentally solid, archi­

tecture service based modeling style. This is focused on programmable platforms and uses an FPM 

based environment. Services are at the transactional modeling level using an underlying event based 

semantics. (Chapter 2)

2. The proposed flow replaces estimated data in simulation with characterized data from real program­

mable platforms. (Chapter 3)

3. The proposed flow replaces manual translation from the more abstract design to implementation with 

a “correct-by-construction” automatic method. (Chapter 2)

4. The proposed flow provides refinement verification techniques that close the implementation gap 

while still allowing highly abstract design space exploration. (Chapter 4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

23

These improvements are made possible by focusing on transaction level representations of pro­

grammable architectures and leveraging an event based simulation environment (i.e. the M e t r o p o l is  

design environment). Figure 1.13 shows the techniques to be discussed in this thesis work and provides an 

ordered step by step explanation of the process.

The contributions to EDA as a result of this thesis are outlined concisely in Table 1.6 and a sum­

mary of this thesis work can be found in [Dou06b],

Technique Contribution/Impact
Architecture Service Modeling 
Chapters 2 and 5

9 Xilinx CoreConnect IPs modeled (Programmable Architecture)
8 Xilinx IP Quantity Managers modeled
SHIP and Switch Fabric modeled (FLEET Architecture)
Programmable configuration file (MHS) extraction automated
Fidelity shown to hold in case studies
Accuracy improved over naive estimation methods
H.264 deblocking filter case study provided

Characterization Process 
Chapters 3 and 5

1st precharacterization process for programmable platforms in SLD
Patent filed regarding the process
400+ systems characterized
Permutation, extraction, and augmentation automatic
Motion-JPEG encoder case study provided

Refinement Verification 
Chapters 4 and 5

Event based refinement methodologies developed (Vertical and Horizontal) 
Interface refinement method developed (Surface)
Compositional component based method developed (Depth)
FLEET communication architecture case study provided 
SPI-5 packet processing case study provided

Table 1.6: Contributions of this Thesis

1.5 Thesis Outline

This thesis is presented as follows: Chapter 2 details the interface function level, transaction 

modeling of preemptable programmable architecture services. Chapter 3 details the characterization of 

programmable platforms for the annotation of architectural services during simulation. Chapter 4 examines 

three refinement verification techniques for these types of architecture service models. Chapter 5 presents 

the results of a number of case studies. These applications are MJPEG encoding, H.264 deblocking filter, 

SPI-5 packet processing, and a novel communication structure of a highly concurrent architecture (FLEET). 

Chapter 6  concludes this thesis with a discussion of lessons learned and provides future directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

24

New approach has improved accuracy and efficiency by relating 
programmable devices and their tool flow with SLD. Retains 

modularity and abstraction as required.

Functional Modeling 
(Not discussed in this work)

Chapter 3 -  Architecture 
Services Characterizatio

5 1  XILINX

6.
Program 
actual device 
directly

Real
Performance

Data

—>3- Augment model 
with real 

performance data

Structure Extractor

r

Narrow the Gap 
MHS c  D „3 .  Produce an actual 

programmable 
platform 
description 
(i.e. MHS File)

4.
Simulation based, 
Design Space 
Exploration

2 .
'Assemble SLD, 
transaction based/ 
architecture from/

Select architecture 
services from 

' libraries

Chapter 2 -  System Level 
Architecture Services

Abstract, Modular

etropolis

Xilinx 
Virtex II

General
Purpose

Special Purpose GeneralProgrammable

Based on DSE results, 
modify architecture model if 
needed

Abstract

Yes? No? 
4

Refined

4b.
Perform refinement check 
(event based, interface 
based, compositional 
component based)

Chapter 4 -  System Level Service Refinement

Figure 1.13: Proposed Design Flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

Chapter 2

System Level Architecture Services

“Hardware: the part o f the computer that can be kicked’’ - JeffPesis

Architecture service modeling is the process of creating an environment to represent and ex­

pose services that can be used to implement functionality. Services represent capabilities of the underlying 

architecture upon which the design will be eventually implemented. These services are exposed to the de­

signer and a correspondence can be made between the functionality present in the application model and the 

services exposed (this is a mapping). This service based environment is then used to investigate the perfor­

mances that potentially can be obtained by using collections of these systems. This methodology requires 

the explicit separation of the functional model and the architecture model. This separation exists in the 

Platform-Based Design methodology (described in Chapter 1) and is required throughout this thesis. This 

chapter will detail the background and related work in creating architecture services of this type, provide 

details of programmable service models that have been created, and outline the key features of this style of 

design space exploration.

Traditionally architecture and functional models have been merged. For example, synthesizable 

RTL design implicitly ties what the system does along with the physical structures that will implement it. 

Other systems begin with a functional description and this description morphs into hardware and software 

through a series of refinement steps. While this process can be automated, to some extent there does not exist 

descriptions of the system which are purely functional or purely architectural. As a result, when a designer 

wants to reuse the functional specification using a new architecture, either a new design must be written, or 

minimally rolled back to the most abstract version. In any event, much design and verification work will be 

lost. This thesis’ approach looks to eliminate this inefficient and potentially error prone process.

However, in the event that this functional/architecture separation does not exist, architecture mod­

eling is difficult to define, has a broad set of interpretations, and classically results in modeling structural

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

26

or topological details of an electronic system. Examples of these alternate styles are covered in Section 

2.2 (related work). There are a number of tradeoffs possible by using these alternate styles. For this thesis 

however, it is assumed that such a separation exists and the ultimate goal of the modeling effort is for de­

sign space exploration via simulation. This chapter will demonstrate why this style was chosen, how it was 

implemented, and how it ultimately achieved the architecture modeling goals outlined in Chapter 1.

This chapter will illustrate how to model architecture services at the transaction level so that modularity 

and accuracy will be maintained. This requires support for a variety o f architecture topologies, service 

exposure levels, and extensions for mapping. This process is clearly illustrated in a platform-based design

environment.

A key question which must be answered in this thesis is: “what is a service?”. It is important to 

remember that architecture modeling efforts can stretch many abstraction levels. For example a basic logic 

operation “A AND B” can be implemented as a 2-input AND gate or it could also be implemented as a 

N-input AND gate where two of the inputs are A and B and the other N  — 2 inputs are tied to “logical 1”. 

In either case an AND service would be exposed but each case may have a different cost associated with it. 

Another example at the other end of the abstraction spectrum is a Discreet Cosine Transform (DCT). This 

operation can be carried out on a model of a general purpose processor or a dedicated HW DCT. Again each 

would be a DCT service but the former may have a higher execution time cost than a dedicated HW block. 

There are many different ways of modeling architectures to this end. A model can be a single entity or a 

collection of smaller entities that make up a larger system. Essentially a service has an interface and a cost. 

Services will be defined formally in Section 2.1 and a high level picture is shown in Figure 2.4.

Tradeoffs can be made between architecture models based on information they provide regarding 

the cost of their selection. These costs can be performance, power, area, etc. These costs need to be accurate 

while allowing the architecture models to be abstract and modular. These are the challenges outlined in 

Chapter 1 and will be addressed in this chapter. Figure 2.1 shows qualitatively how “this work” compares 

with other architecture modeling styles in terms of relative accuracy (how simulation compares to actual 

implementation) and relative efficiency (how easily complex systems can be captured). The other styles 

compared are based on the classification given in [Ada04] regarding TLM modeling styles. This illustration 

clearly places this thesis work in the context of the existing approaches.

While it is clear that architecture modeling is possible, naturally it is important to answer why 

it should be done. Primarily architecture modeling at the system level is done so that system designers 

can see the effect of design decisions prior to implementing the systems. This process is done primarily 

through simulation. The more abstract this process can be, hopefully the faster simulation will be and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

27

RTL

ALGPVT>»o
3Oo
<

PV o£uiQ>>
CP

CPT jZ
tiL

PV

RTLALG

Operations/Transactions

Relative Abstraction
Signals/Bit Level Operations/TransactionsSignals/Bit Level

Relative Abstraction
Register Transfer Level (RTL), Cycle Accurate (CA), Programmer's View + Time (PVT)
Programmer's View (PV), Communicating Processes + Time (CPT), Communicating 
Processes (CP), Algorithmic (ALG)

Figure 2.1: Proposed Service Style Versus Existing Service Styles

less designer effort that will be required. Hence abstraction must be maintained. Simulation must naturally 

also be accurate or it is not a useful exercise as the implementations will not have a correspondence to the 

simulation. Specifically this chapter will demonstrate how to do this in the design flow shown in Figure 2.2 

taken from the larger “proposed flow” from Figure 1.13.

2.0.1 Chapter Organization

This chapter is organized as follows: Section 2.1 provides background and basic definitions re­

lated to system level architecture service modeling. This will be followed by related work in Section 2.2. 

These two sections together will provide a solid foundation for the work presented later. Section 2.3 speaks 

specifically about the process and requirements for creating system level event based service models. This 

includes discussions of how to create an architecture in M e t r o p o l i s  (Section 2.3.1) and M e t r o  II (Sec­

tion 2.3.2). Specific additions to handle preemption and provide mapping extensions are covered in Section 

2.3.3. Sections 2.4 and 2.5 go into detail about two architecture platform models, Xilinx Virtex II Pro 

and FLEET respectively. These sections provide information on how the models were constructed, code 

examples, and sample architecture topologies. Finally Section 2.7 provides conclusions and future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

28

Characteri2ation
Data Input v
(Chapter 3) \

Process Expanded

2  Assemble SLD, 3-Produce an actual 
’ transaction based programmable

architecture from platform
description 
(i.e. MHS File)

Mapping

se rv  ices.

etropolis
Structure Extractor

Select 
architecture 
services from 
libraries 4.

Program 
actual device 
directly

SynM aster

o o n

o c r

B B S
------------------ Xilinx Virtex II Libraries

Chapter 2 -  System Level Architecture Services

Figure 2.2: System Level Architecture Modeling in the Proposed Flow

2.1 Background and Basic Definitions

This chapter and this thesis work in general requires that many terms be defined. These terms 

often have been used in other work using different language and in different contexts. This section is an 

attempt to reduce ambiguity. The terms here are meant to highlight concepts developed and leveraged by 

this thesis. The language used in these definitions is meant to strike a balance between being too generalized 

but at the same time not forcing a formalism that does not exist.

Throughout this thesis the word “behavior” will be used. This is often an overloaded term. In this 

case it means the following:

Definition 2.1.1 Behavior - a possible execution o f a collection o f services. How this execution is measured 

varies from system to system. An architecture model can be viewed as a set o f behaviors. These execution 

sequences should be defined at an observable location such the memory contents, input and output ports, or 

communication points (buses, switch, etc).

Abstraction and behaviors only make sense in the context of a model. The first idea of a model 

is a platform. Genetically we can think of architecture platforms with the following two definitions (from 

[Fel05]):

Definition 2.1.2 An Architecture Platform consists o f a set o f elements, called the library elements, and

o f composition rules that define their admissible topologies o f connection.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

29

Definition 2.1.3 Given a set o f library elements Do and a composition operator ||, the platform closure is 

the algebra with the domain D — { p : p  £ A)} U {pi\\p2 ■ P\ £ D A p 2 £ D) where p l \ \ p 2  is defined i f  and 

only if  it can be obtained as a legal composition o f agents in Do-

Architecture Architecture
ModeM Modetf

V ,  J  v
• - Compositional..
II II

Do, Library Elements

Architecture Platform

Single Component, Multiple Component, Mufti pie Component, 
Single Interface Multiple Interface Single Interface

Provided Interface

ComponentComponent Component

Cost CostA
(C1.C2)Service

Component Component

CostB 1C2) 
Service

Component

Cost (C1, C2, C3) 
service

Figure 2.3: Architecture Platform Composi- Figure 2 .4 : Architecture Service Taxonomy
tion and Creation

Figure 2.3 demonstrates the definitions related to platforms. This is especially important for the 

work discussed here since the library of elements represent smaller architecture service IP models for pro­

grammable platforms and the collection of these elements creates a platform instance.

Definition 2.1.4 Architecture Model - an architecture platform instance. Of the possible platforms that 

can result from a collection o f library elements, one particular selection is an architecture model.

Definition 2.1.5 Service - a library element with a set o f related interface junctions and a cost. A service is 

a tuple < f c> where f  is a set o f interface functions and c is a set o f costs. Services are the building blocks 

o f an architecture model. All services are library elements but not all library elements are services. Library 

elements may provide infrastructure fo r  creating an architecture model but not be visible to the functional 

model through interfaces or may not have costs. These two aspects however are requirements o f a service.

Definition 2.1.6 Interface - a set o f operations included in a service which can be utilized externally. These 

can be collections o f functions (C style methods) or transactions.

For the sake of this thesis an architecture model has to perform the following tasks:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

30

•  Capture the desired services for the given abstraction level. For example at the logic gate level of 

abstraction, an architecture model must capture the number of inputs and outputs it is responsible for, 

as well as potentially capturing the interactions within the component during calculation. For the DCT 

example, it again must capture the inputs and outputs. The behavior internally during computation 

will be much more complex however. Note that an architecture model DOES NOT have to capture 

functionality. That is the job of the functional model. For example the architecture model of a logic 

gate does not need to calculate the outcome of “A AND B”. It only needs to model the services 

involved in such a computation.

•  The second aspect of architecture modeling is providing a Cost associated with the service. This 

cost will be associated at the granularity of the operations recognized in the architectural level. For 

example, the AND logic gate model may simply be annotated with the information that the cost of 

such an operation is 2 time units (whatever those units may be). However the DCT operation may not 

have a fixed cost. Its overall cost will depend on the type, order, and number of internal operations 

that are modeled within the DCT operation. This may depend on the state of the DCT, the types and 

size of its operands, or even the temperature of the device if that is so modeled.

Definition 2.1.7 Cost is the consequence o f using a service. Typically for embedded architecture models, 

cost is thought o f as power, execution time, area, etc. Typically this is a physical quantity. These physical 

quantities are o f interest during design space exploration. Cost can be a function o f various variables or 

conditions such as input type, count, size, state o f the system, etc.

The ultimate goal of this thesis is to allow design space exploration through simulation. In order 

to perform this simulation, mapping is required and the system must then be executed.

Definition 2.1.8 System - a complete mapping o f functional model behaviors to architectural services.

Definition 2.1.9 Execution o f a system is a set o f architecture service interface functions invoked during 

the process o f simulating an application. This results in a collection o f costs as well which can be deemed 

the results o f this execution. These costs are then used to evaluate the potential o f the system model.

Definition 2.1.10 Event - logically an event instance denotes system activity. In this thesis, formally an 

event is a tuple < p, T, V >. p  is the process which generated the event and therefore the event is associated 

with it. T is a set o f tags. Tags are used to assign partial or total orders to events. Finally V is a set o f 

values o f the event. Values can be used to hold information to evaluate the execution costs o f a system using 

events.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

31

Definition 2.1.11 Transaction - a collection o f service interface calls. Transactions can also be one service 

call which generates other service activity without explicitly calling their interfaces. This grouping is done 

to add abstraction and redirection into designs.

Definition 2.1.12 Atomic Transaction a transaction which only explicitly calls a service interface. This 

service must complete (the events generated are annotated and terminate) before another service can begin.

Definition 2.1.13 Annotation is the assignment o f a value to an event. These annotations will typically 

be considered together at the conclusion o f architecture execution in order to determine various metrics by 

which to evaluate the application running on a particular architecture.

2.2 Related Work

When discussing related work in system level architecture service modeling there are many com­

parisons and there are many approaches that can be examined. These approaches can be divided into those 

which are industrially developed and those which are academic based. Additionally, these approaches can 

be placed in a platform-based design flow. This placement allows them to be divided into those which just 

allow a platform description (P) or a platform description plus mapping capabilities (PM). This is exactly 

how the taxonomy in [Dou06c] is constructed. This section will present a brief overview of that work along 

with providing other insights into how this thesis fits into the existing system level design landscape.

In the language development domain there is primarily SystemC [Ope07], This is by far the most 

recognized system level architecture development language. SystemC is a set of libraries built on top of 

C++ which allows for concurrent module simulation, event synchronization, and a variety of elements which 

facilitate architecture descriptions. The core is an event driven simulator using events and processes. The 

extensions include providing for concurrent behavior, a notion of time sequenced operations, data types for 

describing hardware, structure hierarchy, and simulation support. Accellera’s SystemVerilog [Acc07] is an 

extension of verilog which adds system level features. For example it can co-simulate with C/C++/SystemC 

code, includes support for assertion based verification (ABV), and provides extended data types and eases 

restrictions on type usage. Unified Modeling Language (UML) [Uni07] is another well known language 

which is in this space. UML allows for the abstract specification of a system using a graphical set of 

diagrams. It is used to illustrate the system topology and the relationship between components.

In the industrial domain, tools which focus on platform descriptions (P) include such tools as 

Prosilog’s Nepsys [Pro07]. This tool relies on IP libraries based on SystemC. It works at the component, 

transaction level. Beach Solution’s EASI-Studio [Bea07] focuses on interconnection issues at the component

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

32

level and provides solutions to package IP in a repeatable, reliable manner. The suite provides a collection 

of tools which help to manage the design. These tools include data import features, graphical interface 

capture, and IP watermarking. Of particular interest are its Specification Rule Checks (SRC) which ensure 

adherence to naming conventions, name uniqueness, address space uniqueness, and that parameter values 

are resolvable. Sonics’ Sonics Studio [Son07] works at the implementation level by using bus functional 

models (BFM). This tool includes a graphical, drag and drop environment for configuring SoC designs. This 

environment also provides monitor functions and simulation support for IP blocks.

Industrial domain tools for creating platform descriptions with mapping capabilities (PM) include 

VaST Systems Technology’s Comet/Meteor [VaS07]. The Comet tool focuses on high performance proces­

sor and architecture models at the system level. This tool uses virtual processors, buses, and peripheral 

devices. Meteor is an embedded software development environment. It also accepts virtual system proto­

types for cycle accurate simulation and parameter driven configuration. Finally Summit’s System Architect 

[Sum07] looks at multi-core SoCs and large scale systems. This is a SystemC component based system. 

Summit has been recendy acquired by Mentor Graphics.

Finally, industrial tools with functional, platform, and mapping capabilities (FPM) include MLDe- 

sign’s MLDesigner [MLD07]. This tool allows for discrete event, dynamic dataflow, and synchronous 

dataflow model of computation to be described. It is intended to be used for a “top-down” design flow start­

ing from initial specification to final implementation. It includes an integrated development environment 

(IDE) to integrate all aspects in one package. Mirabilis Design’s Visual Sim [Mii07] product family adds 

continuous time and finite state machine (FSM) models of computation natively to this list of supported 

MoCs (they are also available in the experimental library of MLDesigner but as of the time of the work, they 

are in the beta stage). The design process in Visual Sim begins by constructing a model of the system using 

the parameterizable library provided. This model can be augmented as well with C, C++, Java, SystemC, 

Verilog, or VHDL blocks. The library blocks operate semantically using a wide variety of models of compu­

tation as listed. The design is then partitioning into software, middleware, or hardware. Finally the design is 

optimized by running simulations and adjusting parameters of the library elements. The last industrial FPM 

tool is Cofluent’s Systems Studio [CoF07]. It provides transaction level SystemC models which perform 

design space exploration in the Y-chart modeling methodology. The functional description is a set of com­

municating processes executing concurrently. The platform model is a set of communicating processes and 

shared memories linked by shared communication nodes. The platform model has performance attributes 

associated with it as well. This approach is very similar to M e tr o p o l i s  but does not support as wide a 

variety of models of computation or as rich a constraint verification infrastructure.

The academic domain has many offerings as well. An academic tool which captures the function­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

33

ality of a design (F) is ForSyDe [Ing04]. This tool is a product of the Royal Institute of Technology, Sweden. 

It performs modeling, simulation, and design of concurrent, real-time, embedded systems. It has support for 

a wide variety of synchronous MoCs. It uses transformation rules to proceed from a functional specification 

to collections of process networks.

A tool which allows platform descriptions as well as mapping (PM) is Carnegie Mellon’s MESH 

[And03]. MESH stands for Modeling Environment for Software and Hardware. This approach examines 

heterogeneous system design at the component level through C input. MESH is an event based approach 

in which its threads are ordered sets of N  events. MESH is interested as well in the development of bench­

marks, called scenarios, which evaluate collections of heterogeneous programs. Stanford’s Rapide [Dav95] 

is an Executable Architecture Definition Languages (EADL). It utilizes an event based execution model for 

distributed, time sensitive systems. Rapide is a PM approach as well.

Tools which add the ability to specify functional descriptions as well (FPM) include Seoul Na­

tional University’s PEACE [S0 0 O6 ]. This is codesign environment which is Ptolemy based [Jos02]. It touts 

an open-source framework, a reconfigurable framework (design steps are decoupled so that users can intro­

duce their own steps), a separate Java based GUI (named Hae) from the kernel, an objected-oriented C++ 

kemel, support for multilingual system design (dataflow graphs for functional representations and FSMs for 

control), and automatic hard ware/soft ware synthesis as its strengths. UC Berkeley’s MESCAL [And02] is an 

approach for the programming of application specific programmable platforms. It has extended Ptolemy II 

[JohOl] and has focused recently on network processors. Vanderbilt’s GME/GREAT/DESERT [AkoOl] are 

a set of tools for pruning the design space. Aspects of it are UML and XML based. It is focused on domain 

specific modeling and program synthesis. Finally, Spade from Delft University of Technology [PauOla] is 

a kahn process network (KPN) based workbench. It also employs a Y-chart based approach to design with 

functionality and architecture separated. In this case they are termed workload and resources respectively. 

It employs trace driven simulation where time can be accounted for and performance data collected.

All of these academic and industrial tools work at the system level in terms of the level of abstrac­

tion employed.

As mentioned, each of these approaches are placed in a taxonomy in [Dou06c]. Without going 

into all the details contained in that work, one can say that the following issues are investigated: model of 

computation supported, support for quantity annotation, mapping support, specific device support (ASIC, 

FPGA, etc), level of abstraction supported, and underlying semantics. The reader would be well served to 

look at that work as it covers 90+ tools.

Table 2.1 has a small sample of the comparisons that can be made between M e tr o p o l i s  and 

other academic (top half) and industrial (bottom half) approaches. The issues outlined, Event Based, Map­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

ping, Quantity Managers, and Pure Architecture model, were focused on since each one will be integral 

to providing the outcomes outlined in Chapter 1. “Event based” refers to the fact that synchronization is 

done via notification and wait statements using a unified concept such as an events. “Mapping” allows for 

functionality to be assigned to services. “Quantity manager” support indicates that scheduling is explicitly 

separate. Finally a “pure architecture model” indicates that there are two models (functional and architec­

tural) for each system kept explicitly separate. A “+” indicates that the tool supports this concept while a 

indicates that it does not explicitly support this. Naturally if two tools share the same markings, it does 

not mean that they are equivalent in their other features.

Event Based Mapping Quantity Manager Pure Arch. Model
M etropolis + + + +
M e tr o  II + + + +
ForSyDe [Ing04] + + - -
Rapide [Dav95] + + - +
Spade [PauOla] - + - +
Nepsys [Pro07] - - - -
Comet/Meteor [VaS07] - + - +
Systems Studio [CoF07] - + - +

Table 2.1: Comparison of Architecture Service Modeling Approaches

These criteria were selected since mapping is going to be important to the work presented here. It 

will allow the architecture model to be completely separate from the functional model. Quantity Managers 

and Event Based Semantics are crucial to the characterization and annotation method to be presented. Know­

ing which approaches support which aspects illustrate which other design environments may be amenable 

to the work presented here.

2.3 System Level Event Based Architecture Services

When creating an architecture service, there are two primary issues that must be resolved. The 

first issue is at what level of abstraction the service should be created. This answers the question at what 

level of granularity will the services be offered and how the components which compose the service can 

interact. The second issue is what is the underlying semantics of the service. How will they synchronize? 

How will they communicate? How are they scheduled? These questions are in regard to inter- and intra­

service relationships. In this section, these issues will be addressed specifically at the system level using an 

event based semantics. In system level models, the level of abstraction is at the transaction level or higher.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

35

This answers the first question. The semantics that will be discussed here are those which use events during 

simulation for a variety of issues including synchronization, annotation, and communication. The answers 

the second question.

System level event based services are of particular interest for two reasons. First the level of ab­

straction directly attacks the level of complexity currently seen in designs today. Additionally, it allows rapid 

design space exploration. Event based frameworks are useful since a wide variety of models of computation 

can easily be framed using events. Events also have the ability to carry the service cost along with them in 

the form of an event value. This makes such frameworks very flexible.

An event is the fundamental concept in the framework of solutions described. In M e t r o p o l i s  

for example, an event represents a transition in the action automata of an object under simulation. An event 

is owned by the object that exports it and during simulation, generated events are termed as event instances. 

Events can be annotated with any number of quantities (i.e. costs). In addition, events can partially expose 

the state around them and constraints can then reference or influence this state.

A system level service is a collection of components (library elements). Each of the components 

have interfaces which expose their capabilities to other components. A service requires that at least one of 

the interfaces is exposed to the functional model or to other services. These interfaces are called provided 

interfaces. Interfaces between components making up the service alone are called internal interfaces. A 

service can be composed of a single or multiple components. If more than one component has a provided 

interface, then it is considered having multiple interfaces. Multiple interfaces allow for a service to have 

more than one cost model.

A service ultimately then corresponds to a set of event sequences generated by collections of 

components with various sets of interfaces with various costs. This execution therefore represents one 

possible behavior of a system. Here is the taxonomy of service types at the system level (as shown in Figure 

2.4):

• Single Component, Single Interface (SCSI) - a service composed of a single component. The pro­

vided interface is the only interface provided to the functional description or other services. There is 

only one cost model provided with this service which is accessed through the single interface.

•  Multiple Component, Single Interface (MCSI) - a service composed of multiple components. Only 

one of the components has a provided interface. The presence of multiple components allows for a 

more complicated cost model, hierarchical composition of services, and hierarchical interfaces. Only 

one cost model is provided to the functional description.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

•  Multiple Component, Multiple Interface (MCMI) - a service composed of multiple components 

with multiple provided interfaces. This configuration allows for multiple cost models along with the 

advantages of a MCSI configuration.

Notice that single component, multiple interface (SCMI) services are not present because this 

scenario does not make sense given the fact that there are no multiple interfaces to allow for various inter­

service component interactions (and hence generate different cost models). Note that SCSI services can 

return different cost values based on the parameters provided to the interface. They are just restricted to one 

cost model.

Services can also be active or passive. An active service is a service which can generate interface 

calls. This can be thought of as a component which has an executing thread. A passive service is one which 

responds to interface calls. Naturally this response could in turn cause it to trigger an interface call itself.

Architecture topologies can be formed as well using collections of these types of services. Ulti­

mately it is these topologies which form the architecture model. For example there are two primary styles. 

The first is a branching structure. This allows for services that use all types of service categorizations. This 

is illustrated in Figure 2.5 of the left. A branching structure is one in which services are connected in such 

a way that a service may interact with any number of other services. For example a bus service can interact 

with two or more computation services and a memory service. A ring structure on the other hand only allows 

for single interface services (SCSI, MCSI). This is illustrated in Figure 2.5 on the right. A ring structure 

can be useful for certain networking topologies. Also this structure often simplifies the scheduling problem 

as well as an analysis of its execution. Of course it is possible to have mixed topologies in which various 

aspects can be classified as either branching or ring.

Definition 2.3.1 System Level Architecture Modeling - a collection o f services at the transaction level or 

higher o f abstraction. These services can be classified as SCSI, MCSI, or MCMI. Additionally the topology 

of the system can be defined as branching, ring, or a hybrid o f the two.

The next sections (2.3.1 and 2.3.2) will detail two system level event based environments, METROPO­

LIS and M e t r o  II. These sections will detail the components in the framework and the ways in which 

architecture models are created.

2.3.1 M e t r o p o l i s  Architecture Construction

The work presented here in this thesis is built heavily on METROPOLIS. This is a system level 

design language with an event based semantics. This framework was described at a high level in Section 1.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

MCSIMCSI MCSI

r n
SCMI

SCSI
SCMI

MCMI

SCSI SCMISCSI

SCSI

MCSI

SCSI SCSI SCSI

SCSI SCSI

SCSISCSI

MCSIMCSI

SCSISCSI

MCSIMCSI
SCSI SCSI

Architecture Style 2 - Ring

Architecture Style 1 - Branching Ovals -  Passive Services 
Squares -  Active Services

Figure 2.5: Composing Architectures Using Services

This section will describe in detail the process of creating an architecture service model. First the individual 

pieces of M e t r o p o l i s  will be discussed. More about M e tr o p o l i s  construction and implementation 

details can be found in [The04].

M e t r o p o l i s ’s design environment is called the Meta-Model. Its basic elements are called Ob­

jects. Architecture models are networks of Objects. There are five types of objects in the meta-model: 

processes, media, quantity managers, state media, and netlists. Ports are used to access functions of inter­

faces implemented in other objects. What follows are definitions for each of these objects as well as example 

meta-model code.

Definition 2.3.2 Process - A process represents communication. This is an active object (thread) and 

groups o f processes run concurrently. Processes cannot communicate to each other directly. Processes 

can be synchronized by constraints or a special “await” statement.

In Figure 2.6, the process declaration (Cpu) is shown. Two ports are available (portO and portl) 

with access to CpuAPI and CpuAccess interfaces. A parameter is available to customize this process as well 

as a constructor. The “meat” of this process would be provided in the section contained in the “threadO” 

section. Processes have access to “await statements”. Their syntax is, await(guard, testJist, setJist). In 

order for an await statement to be evoked, the “guard” must be true and no interface in the “testJist” can 

currently be in use. Once these conditions are true, the code within the await statement can execute and no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

38

process Cpu { 
port CpuAPI portO; 
port CpuAccess portl; 
parameter int MODE;
Cpu(int mode) {MODE = mode;}
void threadO useport portO, portl {...}
}

Figure 2.6: METROPOLIS Process Example Code

other process can use the interfaces in the “setJist”.

The threads contained in M e tr o p o l i s  processes are scheduled to run by a manager with controls 

the simulation flow. There are two phases in METROPOLIS. In the first phase, the threads run until each

is blocked. In the second phase the manager must decide which of these processes should be selected to

resume running. This process is described in much more detail in [Fel02b].

Definition 2.3.3 Medium - Media are the manner in which processes communicate to one another. Media 

may also be connected to other media. Media are passive objects in that they do not have their own threads 

o f execution. They implement interfaces which are extended through the use o f ports.

medium Bus implements CpuAPI { 
parameter int BITWIDTH;
Bus(int size) {BITWIDTH = size;}
public eval void busRequest(int processID) {...}
public update void driveData(int addr, int data) {...}
}

Figure 2.7: M e tr o p o l i s  Medium Example Code

Figure 2.7 illustrates that media (in this case, a Bus) implement interfaces (CpuAPI). This medium 

interface implements two methods. These methods can change values (as denoted by the keyword “update”) 

or read values (as denoted by the keyword “eval”). As with processes, media can be parameterized as well.

Definition 23.4 Quantity M anager - Quantity managers act as schedulers. They are used to define 

scheduling policies which are used to satisfy constraints. They are passive objects but run functions when 

constraints need to be satisfied. Quantity managers control the execution o f process. Quantity managers 

have ports which are hooked to state media to communicate with the processes they schedule. Quantity 

managers operate during the second phase o f simulation separate from the processes and media.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

39

public interface QuantityManager extends port { 
eval void request (event e, RequestClass rc); 
update void resolve(); 
update void postcondO; 
eval boolean stableO;
>

Figure 2.8: M e t r o p o l i s  Quantity Manager Example Code

As is shown in Figure 2.8 there are four functions which a quantity manager must implement. The 

requestf) function generates a quantity request for a particular event. This function adds the event to a list of 

“pending” events. As can be seen in the figure, two arguments are required. One is the event to request and 

the other is a class object which will aid in that request by providing information about the system. resolve() 

is used to resolve the existing quantity requests. This can be seen as the scheduling step. This pulls an event 

from the “pending” queue. postcond() is used to clean up the state of the quantity and the quantity requests. 

It is at this point that events are annotated. stable() indicates the success of the quantity resolution process 

and is used to determine when the simulation can switch phases.

Definition 2.3.5 StateMedia - A special media type used fo r  communication between processes and quan­

tity managers. It passes the state o f the process to the quantity manager and returns to the process the results 

o f scheduling.

public interface StateMediumSched extends Port { 
eval process getProcess(); 
eval ArrayList getCanDoO;
.... (other support functions) 
update boolean setMustDo(event e); 
update boolean setMustNotDo(event e);
>

Figure 2.9: M e t r o p o l i s  State Media Example Code

Figure 2.9 shows the “setMustX” functions which enable or disable a particular event (and thus 

control which processes can proceed). getCanDo() returns an array of events upon which to begin to sched­

ule. getProcess() returns the process associated with this state medium. There are other support functions 

not shown here but are discusses in [The04].

Definition 2.3.6 Port - Ports are special interfaces which declare methods which can be used through ports.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

40

The methods themselves are implemented by media. In this way ports declare a set o f function prototypes. 

These functions are called by processes or other media connected to the implemented media via ports.

public interface CpuAPI extends Portf 
public eval void busRequest(int processID); 
public update void driveData(int addr, int data);
>

Figure 2.10: M e t r o p o l is  Port Interface Example Code

Figure 2.10 illustrates that interfaces extending ports are simply the function prototypes which 

will later be implemented in media.

Definition 23.7 Netlist - A netlist is a collection o f meta-model objects, their ports, and the connections 

between them. This is instantiated with a variety o f mechanisms including, connect) SrcObject, SrcPortName, 

DestObject) and addcomponent(NodeObject, Netlist Object).

Definition 2.3.8 Scheduled Netlist - A connection and parameterization o f architecture elements in METROPO­

LIS. These include processes and media. Objects in this netlist generate events which need to be scheduled.

Definition 2.3.9 Scheduling Netlist - A connection and parameterization o f quantity managers and state 

media in METROPOLIS. These objects receive events from the scheduled netlist and perform the resolve() 

function.

The scheduling netlist is the workhorse of the simulation engine. The scheduled netlist is where 

the architecture services are located and indicates which components are actually going to be captured and 

eventually used to create a description for a programmable platform.

Definition 2.3.10 Top Level Netlist - A netlist which is only composed o f sub-netlists and is itself not part 

o f any higher level netlist. This is typically the combination o f both the scheduled and scheduling netlist.

Figure 2.11 illustrates a METROPOLIS architecture model. In this case there are meta-model 

processes which represent tasks (T; to T^). These tasks will ultimately be mapped one-to-one with processes 

in the functional model. These tasks trigger the use of services. In METROPOLIS, architecture services are 

collections of media. In the scheduled netlist, the processes are squares (called mapping processes) and 

the media are ovals. Shown are a CpuRtos service, Bus service, and Mem service. Examples are given 

showing potential interface calls on ports. Each service has a corresponding quantity manager (diamond) in 

the scheduling netlist which communicates to the process through a statemedia object (small circles). Also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

41

shown is global time. Global time manages the logical time of the simulation. This is a quantity manager 

which manages the annotation of events with physical time quantities. If this model were to be simulated, 

the result of simulation would be an estimate of the physical time that would be required. The quality of the 

model is often measured as the accuracy between this estimate and the actual value of the implementation.

setMustDo(e) "Enable Process Execution-
resotveO

GTime
Tn

cpuRea<t7 >tateMedla

CpuRtos
usRead

memRead Schedu

Mem
Scheduler

Scheduling Netlist
Scheduled Netlist

Request(e) \

Figure 2.11: METROPOLIS Architecture Netlists

Another view of a METROPOLIS architecture model is shown in Figure 2.12. This shows a graph­

ical representation of both the scheduled and scheduling netlists of a M e t r o p o l is  architecture model. T his 

figure also includes a characterizer database which will be discussed in Chapter 3. On the left hand side 

the scheduled netlist is shown and it illustrates how each MicroBlaze service (media) is connected to a task 

(process). These tasks drive the simulation. It also shows media-to-media connections between MicroBlazes 

and FIFO based communication channels.

2,3.2 Metro II Architecture Construction

M e t r o  II is the successor to M e t r o p o l i s . It is being developed as a response to user and 

designer experiences with the M e t r o p o l is  design framework. Primarily it is concerned with focusing on 

three areas:

1. The ability to import pre-designed intellectual property (IP). This feature will require support for 

a wide variety of design entry styles. IP will have to expose their interfaces and the users will have 

the ability to define “wrappers” that will mediate between the IP and the METRO II framework. IP 

must also have the ability to be connected to each other. This connection will require “adaptors” to 

communicate between various Models of Computation (MoCs).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

42

Scheduled Netlist -  Individual Objects 
Xilinx Virtex II Pro Based System

Characterize!* 
Database -
Stores execution 
time information

uBIaze -  soft
processor cores 

Tasks — Threads of
execution 

FSLs -  FIFO based 
communication channels

Global Time -  Global 
simulation time record 

StateMedia — Quantity Manager 
to Process communication

Schedulers -  Allow tasks 
access to architectural resources I

Scheduling Netlist -  QMs and StateMedia

Figure 2.12: Graphical M e tr o p o l i s  Architecture Representation

2. Behavior and cost must be completely orthogonal. In M e tr o p o l is ,  quantity managers are used 

to both schedule events as well as annotate them. METRO II will introduce “annotators” which will 

ensure a clean separation. In order to accomplish this, a three-phase execution will replace the current 

two-phase execution semantics.

•  First Phase: Base Model Execution. After each process has proposed at least one event it 

will be blocked. Process have the ability to propose more than one event in order to support 

non-determinism. Once all processes are blocked, the next phase is evoked.

•  Second Phase: Quantity Annotation. Each of the proposed events from the first phase is anno­

tated with quantities (one or more potentially). New events cannot be proposed at this phase.

•  Third Phase: Scheduling. A subset of the proposed events are enabled and permitted to execute. 

The remainder of events are blocked. At most one event per process is permitted to execute. 

Once again, new events can not be proposed in this phase. The simulation returns to the first 

phase again and the process repeats.

3. Improve on and provide for a structured design space exploration process. Correct-by-construction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

43

techniques and streamlining the mapping process will be keys to this improvement.

The building blocks of METRO II are: components, ports, connections, constraints (and asser­

tions), adaptors, mappers, annotators, and schedulers. Each of these is described in detail in [Abh07]. This 

thesis will not focus on describing these in more detail individually but will rather propose how to use them 

to build services and hence an architecture model.

Figure 2.13 provides sample constructions of SCSI, MCSI, MCMI services built from METRO 

II components. Each of the services are either composed of one or multiple M e t r o  II components as 

denoted by their classification. In addition, all components which constitute a service are encompassed by a 

“wrapper”. This wrapper becomes the boundary of the service upon which the provided interfaces and the 

cost of the service are defined. This wrapper will provide a consistent global interface to all other services 

to facilitate their connection. These connections will create the architecture model itself. Additionally each 

service is provided with a scheduler and annotator. The scheduler will be used in the third phase of the 

service’s execution and the annotator provides the cost model for the service in the second phase. Service 

“provided interfaces” of the wrapper are connected to M e t r o  II “provided ports” of select components. One 

set of M e t r o  II “required ports” is visible at the wrapper interface to allow the service to take advantage 

of other services if need be.

Each service classification (SCSI, MCSI, MCMI) differs in how many M e t r o  II “view ports” 

are provided to the wrapper. View ports can be used to observe the operation of the service. These ports 

will be useful in creating structures to verify properties of the service (and hence architecture). In the case 

of SCSI and MCSI, there will only be one view port provided. This port corresponds with the component 

which connects its provided port to the wrapper’s provided interface. In the case of MCMI, each component 

with provided ports serving as provided interfaces will have its view port present at the wrapper level. 

Additionally in MCSI and MCMI, “rendezvous ports” are required to synchronize the components. In 

MCSI, rendezvous ports between all components with provided/required port relationships are connected. 

In MCMI, rendezvous ports are connected between components with provided/required port relationships 

provided that at least one of the two components does not contribute to the provided interface.

Both branching and ring architecture styles can be created using these service types. Whereas 

M e t r o p o l is  required that active services have processes and passive services have media, METRO II does 

not have this distinction. All services are only composed of components. This potentially leads to more 

flexibility in specification or dual operating mode services (a switch that indicates if the service is passive or 

active). M e t r o p o l is  required that mapping tasks be provided with the architecture model as active objects 

by which the functional model can be mapped to. This is not needed in METRO II. A provided interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

44

Provided Interface 

\com7  N /
SCSIMetro II View Port

MCMI
Metro II 

Provided Port
Metro II 

Required Port . Metro II 
’Component

Costf  Metro II 
Annotator qdMetro II Wrapper

MCSI
A<

Metro II 
;omponent

Metro II 
Component

Metro II 
Component

,r Metro II y  
Rendezvous’PortCost

Metro II 
ComponentMetro II Wrapper

\ *  Metro II 7.
V S c ^ d u le y i: '*  

Metro II Wrapper,

Figure 2.13: Architecture Service Model Proposal in M etro  II 

itself can serve as this function using the interface of the M etro  II component’s provided port.

2.3.3 Architecture Service Extensions

During the development of architecture service models in a system level design environment many 

issues need to be addressed. Many of these issues are explicitly discussed in this chapter (transaction level 

modeling, estimation techniques, event based simulation, etc). This section is going to focus on two issues 

which were not natively supported in the M etro po lis  modeling environment and hence specific solutions 

needed to be created. They are highlighted since their solutions are highly generic and easily supported to 

other environments (SystemC [Ope07] for example). The first issue relates to preemption and the second to 

mapping. The first issue is concerned with capturing the correct behavior of the architecture being modeled 

and supporting the appearance of architecture task level concurrency and interruption. The second issue 

looks to provide a more efficient path to automatic mapping of functional and architecture models. Implicitly 

the first issue deals with accuracy and the second issue with efficiency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

45

Preemption Extensions

In the course of creating an architecture it becomes clear that some services are naturally pre­

empted. Examples scenarios are a CPU context switch or Bus transactions. Preemption must allow for 

one thread of execution (M etro po lis  process) to relinquish control of a service, the system must save the 

state of that execution, and the the service must allow for the new thread to use the service. Additionally, the 

simulation must make sure that the measured simulation time not only reflects the execution of the operation 

but also the overhead that would be required to perform such a transaction.

In an event based architecture, there is no way to preempt a single event. Architectures services 

which can be preempted therefore must be a series of events which are related together to form a transaction. 

Some transactions can be preempted and others can not. Transactions should identify as to which group they 

belong to. It becomes also clear that this will require the notion of Atomic Transactions. A atomic transaction 

is one which cannot be preempted. In many cases this will be a single event but it is possible that it can be a 

collection of events as well. Atomic transactions were defined in Section 2.1.

Preemption can be dealt with in M etro po lis  quite simply. Prior to dispatching events to a 

quantity manager via the request() method, decompose transactions (using a “decoder”) in the scheduled 

netlist into non-preemptable chunks (the atomic transactions). There must be infrastructure which maintains 

the scheduling status with an FSM object (counter) and controller. Figure 2.14 illustrates the preemption 

process.

Mapping
Process
(Task)

1. A transaction is 
introduced into the 
architecture model.

Transl FSM1

TransO FSMO

4. Update the FSM to track the state of 
the transaction.

Event ^T
I  /

^ D ecoder (Process)
Initial State

« / s 2 / S 3 j

1 ic  2 i C3 J Coeffcients 
A 1 C B i7c 1 AT

Quantity Manager

transactions and FSMs

3. Dispatch the atomic transaction (AT) 
2. Decoder transforms t0 the quantity manager (individual 
the transaction into events which make up the AT), 
atomic transactions.

=ture to store setMustDo
setMustNotDo()

5. Communication with preempted 
processes through StateMedia

Figure 2.14: Architecture Extensions for Preemption

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

46

Figure 2.14 illustrates the preemption process. There are several stages involved in the process:

1. A transaction is introduced into the architecture model. This is done by the mapping process which is 

mapped to the tasks in the functional model. This is a single event generated by a task process in the 

scheduled netlist.

2. The transaction proceeds to a decoder object (process) connected to the service media. This decoder 

must perform several tasks:

•  Identify if the transaction is atomic or not. This is done through a table lookup or by a transaction 

argument detailing its status.

•  In the event that it is not atomic, decompose it into atomic transactions (A, B, C in the figure). 

Each atomic transaction is typically made up of transactions from SCSI services but it does not 

have to be, it just will raise the notion of atomic to contain more components. Often atomic 

transactions are defined around provided interfaces of services.

•  Augment the atomic events with information regarding architecture execution. This is a coeffi­

cient which will be used to ensure that each atomic event takes a fraction of the total execution 

time for the entire transaction. Coefficients can be created dynamically using simple floating 

point operations.

•  Introduce events to represent the overhead associated with the preemption type (1, 2, 3 in the 

figure). These events will also have a coefficient value. How to generate these events, how many 

of them, and their cost is determined by the decoder.

•  Create a finite state machine. The number of states is a one-hot encoding based on the number 

of atomic transactions. Each atomic transaction now has a partial ordering assigned to it. It is a 

partial ordering since atomic transactions may issue nondeterministically.

3. Dispatch (request()) the atomic transactions as normal to the quantity manager. Here they will go 

through the standard resolve(), postcond(), stable() iterations.

4. Update the FSM to track the state of the transaction as a whole. When no transition can be made, the 

transaction is considered complete. In the event that a new FSM has been created by a preemptive 

process, you should push the existing FSM requests on a stack and pop them off as other FSM finish. 

This is assuming a LIFO preemption policy.

5. Use statemedia to communicate with processes using the setMustDo() and setMustNotDo() functions. 

The preempted process will be blocked whereas the preempting process will be allowed to proceed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

47

6 . There is a decoder assigned to each service which supports preemption. In the event that preemption 

occurs, the FSM and bundled atomic events are pushed onto a stack (LIFO object). Each decoder 

(and hence services supporting preemption) has its own stack. Once the preemption is done, the stack 

is popped and execution continues. Once the FSM reaches the final state, the information for that 

transaction is discarded and the stack can be popped again.

This approach can be improved to some extent by a more compact FSM encoding but at the 

level of abstraction required by transaction level modeling, there will rarely be more than ten states in any 

transaction. In addition the time required for the overhead of a preemption is unique to each service and 

must be provided by the designer.

Mapping Extensions

A unique aspect of programmable platforms is that they allow for both SW and HW implemen­

tations of a function. For example there may be a soft processor model (Xilinx MicroBlaze for example) 

which can perform a SW routine for DCT. Additionally there may be a dedicated DCT block in the program­

mable logic fabric. At some point one may want to explore automated mapping of functionality to services. 

A service which provides general purpose processing can handle a wide variety of functionality mappings 

whereas a service for a specific HW component can only offer one type of functionality. In is not appro­

priate to map functionality to any architecture block. If this was done, services would not be available to 

the functional netlist and minimally the simulation would halt, if not fail altogether. Not to mention that not 

all architecture blocks can as efficiendy perform operations. Not knowing the service capabilities severely 

limits the ability to do intelligent mapping. Therefore there is the need to express which architecture compo­

nents can provide which services and with what affinity. Affinity refers to how well the service can provide 

the desired operation. For example, an ASIC service providing an “ADD” service will have a high affinity to 

provide this service if it has a lower cost (execution time perhaps) than a general purpose processor software 

service “ADD”. This information is used for mapping of functionality to architecture models. Mapping can 

employ greedy, task specific, or other strategies to maintain the best average affinity rating over all mapped 

tasks. An example of the information provided to the mapping network is shown in Figure 2.15.

In Figure 2.15 there are two processes (tasks) connected each to their own media (service). The 

service on the left is a HW Discreet Cosign Transform (DCT). The service on the right is a MicroBlaze 

soft processor model (think of this a a general purpose computation service). The mapping processes are 

equipped with two functions. One function can be queried to return all of the services that it has access to. 

In this picture, the task on the right has access to a service which can provide execute (generically), DCT,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

48

Operations
Export information available 
from service 
associated with 
mapping process Task ’ Affinity

0/100
Mapping 100/100

0/100

HW DCT 
(Service)

Ability to  perform 
operations

Export information from 
service associated with 
mapping process

Only can perform DCT!

Mapping
Process
(Task)

uB laze
V (Service)

Task
Execute
DCT___
FFT

Affinity j
50/100
20/1001
2/100

General I

Can perform multiple operations

Figure 2.15: Architecture Extensions for Mapping

or FFT services. The task on the left only has access to a DCT service. The tasks know this information 

regarding available services since each service reports itself and its capabilities to the task. Additionally 

the second function, assigns an affinity to each service. This is also reported to the task by the service. 

This process is done statically initially but can be updated at runtime by the performance of the simulation. 

Affinity is a relative value, but in the illustration it is shown as a score out of 100. As is shown, the task 

on the left can only perform DCT (since it is tied to a dedicated HW block). In practice it would not even 

have other task operations shown as available. However, the task on the right can do all three operations, 

including DCT (albeit with a lower affinity).

The models developed in this work provide a service interface (getCapabilityList()) which returns 

the affinity and operations of the service in a hash table. It is the responsibility of the mapping network to 

use this information to efficiently map functionality to architecture. This work will not describe the many 

ways in which this information can be used explicitly.

2.4 Xilinx Architecture Modeling Exploration

In order to put the ideas proposed in this chapter to test, system level architecture service models 

were created based up the Xilinx Virtex II platform FPGA. An FPGA was selected since one set of services 

can be arranged in a wide variety of configurations. Whereas a static architecture only has only configu­

ration, an FPGA has configurations only limited by the size of the configuration fabric and its topology. 

Building a library of programmable components will allow a designer to express many systems with maxi­

mum flexibility. These are some of the reasons mentioned earlier in the introductory chapter. The services 

(components) chosen were based upon those that could easily form embedded systems and that were well

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

49

defined and characterized. To this end, the IBM CoreConnect [IBM99] based IP blocks were examined.

The architecture service models created can be categorized around the basic service type they

represent.

•  Computation - PowerPC, MicroBlaze, Synthetic Master, and Synthetic Slave - (4 services total)

•  Communication - Processor Local Bus (PLB), On-Chip Peripheral Bus (OPB), BRAM, Fast Simplex 

Link (FSL) - (4 services total)

•  Coordination - PowerPC Scheduler, MicroBlaze Scheduler, PLB Scheduler, OPB Scheduler, BRAM 

Scheduler, Bridge Scheduler, FSL Scheduler, and a General Scheduler - (8  schedulers total)

•  Hybrid Services - Mapping Process, OPB/PLB Bus Bridge - (1 process, 1 service total)

Each service listed behaves as the device is described in its datasheet specification. PowerPC 

and MicroBlaze services are MCMI services. PLB and OPB are MCMI services. BRAM and FSL are 

SCSI services. Synthetic master and slave devices are used to represent dedicated peripherals created in 

the programmable fabric. For example if a designer wishes to create a dedicated hardware block, they 

would create the functionality and encapsulate it with the appropriate synthetic component. The synthetic 

components possess the interface of the PLB, OPB, and FSL and can be used with each if needed. Both 

master and slave devices are MCMI services.

In addition to the core architecture modeling concepts outlined previously, two key aspects were 

maintained:

•  Transaction Level Interfaces - this required that the interfaces provided by the services (media) were 

at the transaction level and that they corresponded syntactically to the methods that would be invoked 

in the process of executing the functional model. Each service transaction was denoted as “complex” 

or “atomic” as well. Each used event based semantics for synchronization.

•  Netlist instantiation and parameterization identical to the implementation IP - the black box 

model of the IP was identical to the parameters used to instantiate an architecture object in the sched­

uled netlist. This black box “signature” can be obtained from the Xilinx IP implementation and 

generation tools such as CoreGen.

Transaction level interfaces not only are important to maintain the system level of abstraction, but 

they were also very easy to map to the functional model. Examples of the transaction level interfaces are:

Task Before Mapping: These function prototypes are what the mapping process task will export 

to the functional model. Additionally it will export the service functionality and affinity. The parameters the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

50

prototypes require should be assigned by the functional model and the method should correspond to one or 

more internal interface functional calls.

Read (addr, offset, cnt, size)
Write(addr, offset, cnt, size)
Execute (operation, complexity)

A “Read”, ’’Write”, or “Execute” service connected to the mapping process can be SCSI, MCSI, 

or MCMI. In this thesis it is typically implemented as a MCSI. The interface itself is provided to tasks 

through either an RTOS or CPU service. The services will make use of multiple components potentially 

such as caches, buses, or memory elements.

Task After Mapping: This is the result of mapping when the parameters are provided from the 

functional model. The “operation” field in the execute function is provided during mapping thanks to the 

mapping process. Complexity of the execute function is provided by the functional model mapped to the 

architecture service. Complexity itself is determined by the designer of the functional model.

Read (0x34, 8, 10, 4)
Write(0x68, 4, 1, 2)
Execute (add, 10)

Computation Interfaces - These interfaces are the same interfaces which are exposed to the 

functional model through mapping tasks but their implementation will be much different. Whereas the 

mapping tasks are concerned with determining the parameters of the interface calls, computation interfaces 

actually have to implement the services and most importantly the cost models.

Read (addr, offset, cnt, size), Write(addr, offset, cnt, size),
Execute (operation, complexity)

Computation services are MCMI type services in the majority of cases. Most computation services 

at the system level are still composed of multiple components with multiple interfaces (and hence costs) for 

those services. In the event that the model has a very coarse granularity they may be SCSI.

Communication Interfaces (Buses) - These interfaces will utilize services to translate read and 

write requests into sequences of atomic transactions. The interfaces listed here can be combined in a variety 

of ways to form a number of bus protocols.

addrTransfer(target, master) 
addrReq(base, offset, transType, device) 
addrAck(device)

dataTransfer(device, readSeq, writeSeq) 
dataAck(device)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

51

Bus based communication services are MCSI services with the bus itself being the single interface 

point often. They may be MCMI in the event that they represent a hierarchy of buses.

Communication Interfaces (FSL) - Unlike bus services, FSL interfaces only need read and write 

capabilities since an FSL acts as a FIFO.

Read (cnt, size), Write(cnt, size)

FSL services are those which interact with buffer based communication. These are SCSI where the 

component is a simple buffer and they only have a single interface. These are used often in ring topologies 

as illustrated or in dataflow applications.

These interface prototypes are shown to give the reader a feeling for the types and level of abstrac­

tion provided by the services. In the following sections, the actual interfaces for the components modeled 

will be shown.

Xilinx Vertex II Pro Execution Estimation

In order to begin to estimate the performance of the architecture service models in METROPOLIS, 

performance numbers for various operations must be determined for particular architecture instances. These 

operations should correspond to services that can be requested by the mapping process (task) in a given 

architecture model. These estimates are the cost of the services. These services requiring estimates will be 

described in the appropriate sections to follow.

The Xilinx Virtex II Pro was chosen due to its flexibility. It is the combination of FPGA fabric 

along with embedded PowerPC units. This flexibility allows for static architecture configurations along with 

custom implementations. This allows for one device to represent many architecture models for METROPO­

LIS. Using this platform will allow for rapid, meaningful performance estimation across many architecture 

models. Additionally models can be quickly compared to their implementation counterparts.

There are many issues with this estimation method as will be demonstrated in Chapter 3. In 

fact the following chapter will go to great lengths to show why this method is not desirable. However it is 

included as it is important to show how such a process may be carried out. It is important that this estimation 

process occur to see if the characterization method offers an advantage.

The services that must be annotated with an execution metric are in three areas and are as follows:

1. CPU services - these will ultimately be represented on the PowerPC embedded core and MicroBlaze 

soft core which are available in the Virtex II Pro.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

52

• The interfaces of interest are cpuRead(), cpuWrite(), execute(). These interfaces will result in 

event based requests which potentially access the bus and then an external memory. Therefore 

they should represent uncacheable loads and stores.

2. BUS services - these will be represented by CoreConnect Processor Local Bus (PLB) and On-Chip 

Peripheral Bus (OPB) requests. In addition there are FSL write and read interfaces but will not be 

discussed explicitly here.

•  The interfaces of interest are busRead() and busWrite(). These are event based requests to the 

PLB and OPB and will include both the address and data tenure phases.

3. Memory services - these are SelectRAM+ (BRAM) requests which will be characterized by Selec- 

tRAM+ operations which are event based requests as well.

•  The interfaces of interest are memRead() and memWrite(). These will be read and write 

operations which are fully synchronous for the SelectRAM+. This information was used to 

develop a general BRAM model since it is more robust, portable, and scalable than the static 

estimation data available for more complex memory models such as DDR or other SDRAMs. 

Also BRAM is very prevalent in Xilinx devices and very close to the configurable fabric which 

aids in performance.

The following sections detail the various components modeled in METROPOLIS and each culmi­

nate with a performance estimation for each interface operation. The information for estimation is gathered 

from [Xil03b], [IB M 99], and [Xil02],

In future sections of the paper, “estimated” data will be referred to. The data being referred to is 

that which is described in these sections.

PowerPC

The PowerPC core on the Xilinx Virtex II Pro is the PPC405 RISC CPU. This is a five stage 

pipeline, 32 bit processor. There are several basic guidelines regarding instruction execution.

•  Instructions execute in order

•  Assuming cache hits, all instructions execute in one cycle

-  With the exception of divide, branch, MAC, unaligned memory accesses, and cache control 

instructions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

53

Figure 2.16 provides details on the PowerPC model created for METROPOLIS. Included in this 

figure are the parameters, ports, and interfaces implemented by this object. This same style of illustration 

will be shown for each of the services described in this chapter.

public medium PPC 
implements PPCISA, 
GPPOperation, PLBMaster 
{ .  . . }

etropolis

£  XILINX

_portSM
_portGT

p p c  0
_portPLBV XX -PortChar

Parameters
private int
C_DISABLE_OPERAND_FORWARDING ; 
private int C_DETEKMINISTIC_MULT; 
private int C_MMU_ENABLE;

Ports
//connection to the PLB bus 
port PLBTrans _portPLB; 
//connection to characterizer 
port cycleLookup _portChar; 
//StateMedia hooked to scheduler 
port SchedReq _portSM;
//StateMedia hooked to global time 
port GTimeSMInterface _portGT;

Figure 2.16: M etr o po lis  PowerPC Model

Since the load and store instructions do not “assume cache hits” they will take more than one cycle. 

For the purposes of the initial architecture service models, the CPU functions that need to be estimated are 

the read (load) and write (store) instructions. There are loads and store instruction for data in byte, halfword, 

and word formats. The format desired is expressed as the “size” argument shown in the function prototype. 

In addition, there are various addressing modes and side effects that can be associated with each data size 

request. However, neither the size of data transferring, address mode, or side effect have any effect on the 

cycle count within the load and store family of instructions (thanks to the strict RISC regularity). Tables 2.2 

and 2.3 show the wide variety of loads and stores that need to be given performance numbers.

An uncacheable load instruction will incur penalty cycles for accessing memory over the PLB. 

Assuming the PLB is at the same speed as the processor and that the address acknowledge is returned in the 

same cycle that the data cache unit asserts the PLB (OPB), the number of penalty cycles will be 6 cycles 

with operand forwarding and 7 cycles without operand forwarding. The architecture service models in 

METROPOLIS do not explicitly include operand forwarding so a load will take 7 cycles.

The PowerPC data cache unit has a queue so that store instructions that miss in the data cache 

appear to execute in a single cycle. These services are constructed assuming aligned memory access and no 

usage of the stwcx (conditional store; takes 2 cycles). Therefore stores will take 1 cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

54

stb sth stmw stw
stbu sthu stswi stwbrx
stbux sthbrx stswx stwcx
stbx sthux stwu stwux

sthx stwx

Table 2.2: PowerPC store instructions

lbz lha lmw
lbzu lhau lswi
lbzux lhaux lswx
lbzx lhax lwarx

lhbrx lwbrx
lhz lwz
lhzu lwzu
lhzux lwzux
lhzx lwzx

Table 2.3: PowerPC load instructions

Table 2.4 gives the final analysis of the interfaces’ estimated performance. All instructions assume 

aligned accesses.

Interface Assumptions Cycle Count
cpuRead() Any load instruction without operand forwarding 7 cycles
cpuWriteO Any store but stwcx 1 cycle
execute(int inst, int comp) Valid inst field (1 * complexity) cycles

Table 2.4: PowerPC Service Performance Estimation Summary

MicroBlaze

In addition to the PowerPC processor, an architecture service model was created for the MicroB­

laze processor. The MicroBlaze is a soft processor core which is created in the FPGA fabric. Whereas there 

are only 2 to 4 PowerPC cores available to Xilinx Virtex II Pro, one can fit a much larger set of MicroBlazes 

on a die. This allows for interesting, highly concurrent architecture topologies. When the designer wishes to 

construct a netlist using these components they are restricted only by the size of the overall device and not 

a static number (as is the case with the PowerPC). Another way in which this device contrasts the PowerPC 

is that it connects to the OPB bus and FSL units as well (not the PLB).

The MicroBlaze is a 32-bit Harvard architecture processor. Its base architecture has 32 registers, 

ALU, shift unit, and two levels of interrupts. This is a DLX style microprocessor with a 5-stage pipeline in 

which most instructions complete in one cycle. The processor can operate at speeds up to 210Mhz on the 

Virtex 5. Optional configurations include a floating point unit, barrel shifter, divider, and multiplier. It also 

interfaces with a high speed, local memory bus (LMB). The M etro po lis  model is shown in Figure 2.17.

Table 2.5 provides execution time estimates for the the MicroBlaze. Note that the function pro-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

55

public medium uBlaze 
implements uBlazelSA, 
GPPOperation, 
OPBMaster{...}

etropolis

£  XILINX

_portMFSL _portSFSL

G j u B l a z e  Q
- P O r tQ P ^ v

_portSM

_portChar 

_portGT

Parameters
private int C_FSL_LINKS;
private int C_FSL_DATA_SIZE;
private int C_USE_BARREL;
private int C_USE_DXV;
private int C_USE_HW_MUL;

Ports
port OPBTrans _portOPB;
//connection to characterizer 
port cycleLookup _portChar;
//FSL ports
port FSLMasterInterface[] _portMFSL; 
port FSLSlavelnterface[] _portSFSL; 
//connection to StateMedia 
port SchedReq _portSM;
//StateMedia to global time 
port GTimeSMInterface _portGT;

Figure 2.17: METROPOLIS MicroBlaze Model

totypes here are pseudo and not what is actually provided in the actually meta-model code for the element. 

Typically what differs is the list of arguments. These are left off in order to keep the table size manageable. 

These include IDs, control arguments, or addresses typically.

Interface Assumptions Cycle Count
cpuRead(int bus) Bus Dependent l(LMB), 7(OPB) cycle
cpuWrite(int bus) Bus Dependent l(LMB), 2(OPB) cycle
fslRead(int size) Transfer Size (1 * size) cycles
fslWrite(int size) Transfer Size (1 * size) cycles
execute(int inst, int comp) Valid INST Field (1 * complexity) cycles

Table 2.5: MicroBlaze Service Performance Estimation Summary

Synthetic Masters and Slaves

Synthetic master and slave services are used to represent custom made programmable function­

ality created in the device fabric. The difference between a master and slave device is the way in which it 

interacts with the bus (PLB or OPB) it is attached to. A slave can only respond to requests whereas a master 

can generate requests. In the terms of the services in this thesis, a slave is a passive service and a master is 

an active service. Figure 2.18 illustrates the M etro po lis  service model.

The estimated execution times for bus and FSL communication interfaces of a synthetic service

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

public medium 
SynthHWTypeS (Slave) 
implements HWOperation
( ... )

_portMFSL _portSFSL
(master) (slave)

_portOPB

_portPLB

etropolis

K xiunx

yntheti
Slave/
Master DortCnar

_portGT
_portSM

public medium SynthHWTypeM (Master) 
implements HWOperation (...)

Parameters
private int C_FUNCTION; 
private int C_CAPABILITY; 
private int C_FSL_LINKS; 
Private int C FSL DATA SIZE;

Ports

port PLBTrans _portPLB;
port OPBTrans _portOPB;
port cycleLookup _portChar;
port FSLMasterlnterface[] _portMFSL;
port FSLSlavelnterface[] _portSFSL;
port SchedReq _portSM;
port GTimeSMInterface _portGT;

Figure 2.18: M etro po lis  Synthetic Master/Slave Model

are the same as the MicroBlaze service costs. The PLB access time for a synthetic service is the same as 

the PowerPC service. However, the execution time is a function of what function is being computed, its 

complexity, and the port that it is being accessed from. The port being accessed has differing overhead 

for a master device as opposed to a slave device. The equation for execution time is inst * complexity +  

PortAccessOverhead where 0 <  inst < I,complexity >  1, and 2 >  PortAccessOverhead >  0.

CoreConnect Buses

The CoreConnect environment provides three buses. The Processor Local Bus (PLB), the On- 

Chip Peripheral Bus (OPB), and the Device Control Register (DCR) Bus. This discussion begins with the 

PLB which is where the PowerPC will reside in the majority of designs. The PLB is used to make requests 

to memory elements or other peripherals. The OPB which is primarily used with the MicroBlaze, will be 

discussed next. The DCR was not modeled because the investigations involved with this thesis did not 

require it.

The PLB is the connection provided to the PowerPC cores giving them high speed access to 

peripherals. It has separate 32-bit address and 64-bit data buses. It is a fully synchronous bus which supports 

multiple master and slave devices. Read and write transfers between master and slave devices occur through 

the use of PLB bus transfer signals. Each PLB master has its own address, read-data, and write-data buses. 

Slaves have a shared but decoupled interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

Figure 2.19 illustrates aspects of the PLB bus model in METROPOLIS.

public medium 
PLB implements 
PLBTrans {... >

_portSlaves

_portGT

_portSM

etropolis

H  XILINX

_portMemory

_portMasters 

_portChar

Parameters
private int C_DCR_INTFCE; 
private int C_EXT_RESET_HIGH; 
private int C_IRQ_ACTIVE;

Ports
//connection to characterizer 
port cycleLookup _portChar;

//StateMedia hooked to arbiter 
port SchedReq _portSM;

//StateMedia hooked to global time 
port GTimeSMInterface _portGT;

port PLBSlave[] _portSlaves; 
port GPPQperation[] _portMasters;

//hooked to BRAM devices 
port memory[] _portMemory;

Figure 2.19: METROPOLIS PLB Model

The PLB bus transactions consist of multiple address and data tenures. The address tenure has 

request, transfer, and address phases. The data tenure has transfer and acknowledge phases. Begin by 

assuming that there are only one master and one slave on the bus. In the event that a requesting master 

is immediately granted the bus and the slave acknowledges the address in the same cycle, then all three 

address tenure phases happen in 1 cycle for a total of 3 cycles. The data tenure phase requires n cycles for 

the transfer phase where n is the number of 32-bit words transfered and then 1 cycle for the acknowledge 

phase. This is a total of n+1. Combining the data and address tenures results in 4+n total cycles. It is 

understood that one master and one slave is a gross oversimplification and it will be shown to have its 

disadvantages when compared to the characterized process described in Chapter 3. The OPB has a more 

sophisticated estimation scheme than the PLB but also its accuracy ultimately paled in comparison as well 

to the characterized method.

Table 2.6 provides the final PLB bus estimation numbers. The “Size” argument in the functions is 

translated to the number of 32-bit words transferred, n.

The OPB is a low speed interface for the PowerPC. It was modeled primarily however since it is 

available to the MicroBlaze soft cores as a master interface (which the PLB is not for the ML310 board used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

58

Interface Assumptions Cycle Count
busRead(int size) Single Master, Single Slave on Bus 4+n cycles
busWrite(int size) Single Master, Single Slave on Bus 4+n cycles

Table 2.6: PLB Bus Service Performance Estimation Summary

in the experiments). It is a fully synchronous bus which is intended to work at a lower level of hierarchy 

as compared to the PLB. It supports separate 32-bit address and data buses. It accesses slave peripherals 

through the PLB-to-OPB bridge.

Figure 2.20 illustrates aspects of the OPB bus model in M e t r o po l is . It is similar to the PLB in 

most respects (ports for example) but implements different service interfaces on its ports and has different 

parameters.

public medium 
OPB implements 
OPBTrans {...}

_portSlaves

_portSM

_portGT

etropolis

£  XILINX

_portMemory

_portMasters 

_portChar

Parameters
private int C_NUM_MASTERS; 
private int C_NUM_SLAVE S; 
private int C_REG_GRANTS; 
private int C_OPB_DWIDTH; 
private int C_OPB_AWIDTH;

Ports//connection to characterizer 
port cycleLookup _portChar;

//StateMedia hooked to arbiter 
port SchedReq _portSM;

//StateMedia hooked to global time 
port GTimeSMInterface _portGT;

port OPBSlave[] _portSlaves; 
port OPBMaster[] _portMasters;

//hooked to memory devices 
port memory[] _portMemory;

Figure 2.20: METROPOLIS OPB Model

Based on IBM’s OPB Bus Functional Toolkit [IBM03], three various scenarios were supported 

for OPB operation. These scenarios formed the basis of the performance estimation data. The first scenario 

is a synchronized, unlocked, multiple master memory access (SUMMA). In this scenario, there are two or 

more masters and one slave device. Each master wishes to access the this slave. It is assumed that one 

master receives access to the slave first, completes its transaction, and then notifies the second master that it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

59

can now proceed. This notification is why this scenario is denoted “synchronized”. Since the masters work 

together in this scenario, the transfer time is 2nm+nm (3nm) where n is the number of 32-bit data words 

transfered and m is the number of masters which wish to transfer. 2nm is the set up (request and grant) for 

each transfer of each master, ran is the transfer cycles themselves for each master.

The second scenario is a locked, multiple master memory access (LMMA). This assumes that 

once a master obtains the bus it is “locked” which will prevent other masters with higher priority from 

accessing the bus. This is a less cooperative scenario as compared to SUMMA. This increases the overhead 

of obtaining the bus from 2 to 4 cycles (assuming an additional request and grant phase). Therefore, the 

transfer time is 4nm+nm (5nm). Again n is the number of 32-bit words and m is the number of master 

devices involved in the transaction. 4nm is the set up (request and grant times two) for each transfer of each 

master, nm is the transfer cycles themselves for each master.

The third scenario is a burst read or write using bus lock and sequential addresses (BRWLSA). 

This scenario is for a single master and slave with bus parking disabled, round robin arbitration, and the 

bus locked for the entire transfer. Since the addresses of the burst are sequential, the OPB can work more 

efficiently. It does not need to go through a request and grant addressing phase for each transfer. Since the 

bus is locked, it does not need to worry about multiple masters interrupting the transfer. Since bus parking is 

disabled and round robin arbitration is assumed, other masters should have access to the bus in such a way 

that fairness is preserved and starvation avoided. The transaction time is 2 + n where n is simply the number 

of 32-bit words transfered during the burst along with the two extra cycles for the initial request and grant 

phases.

Table 2.7 provides the final OPB bus estimation numbers.

Scenario Assumptions Cycle Count
SUMMA m Masters, Single Slave, Synchronization, n words 3nm cycles
LMMA m Masters, Single Slave, Locked bus, n words 5nm cycles
BRWLSA Single Masters, Single Slave, Locked, Burst, Seq. Addr. 2 +n cycles

Table 2.7: OPB Bus Service Performance Estimation Summary

SelectRAM+ (BRAM)

The memory chosen to profile for performance estimation is the SelectRAM+ memory which is 

prevalent on the Virtex II Pro device. This is a dual port RAM which comes in 18Kb blocks. Each of its 

two ports can be independently configured as a read port, write port, or read/write port. Depending on its 

configuration as single port or dual port, various different memory partitions are available. In order to access

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

60

the memory, there is one read operation and three write operations (writeJirst, read-first, and no.change). 

Operation is synchronous and behaves like a register in that address and data inputs need to be valid during 

a set up time and hold time window prior to a rising edge of a clock edge. Data output changes as a result of 

that same clock edge. SelectRAM+ was chosen since it is very easy to profile, prevalent on the device, and 

easy to model.

SelectRAM+ is often called block RAM or BRAM because of how it is available in cascaded 

blocks along the FPGA configurable logic blocks (CLBs). This makes them available to implement deeper 

or wider single- or dual-port memory elements. In the largest Xilinx Virtex II Pro device (XC2VP125) there 

are 18 columns of BRAM for a total of 10,008 Kbits.

BRAM interfaces were exported up to the functional model to simplify the creation of basic sys­

tems. Parameters required are the enable (EN), write enable (WE), and Set/Reset (SSR) signals. Also 

BRAM was very easy to use in creating actual implementations for comparison with the simulations. Often 

times, simple communication with BRAMs made for very effective dataflow systems based on the MicroB­

laze and FSL components.

Figure 2.19 illustrates the BRAM bus model in M et r o po l is .

Parameters
private int C_MEMSIZE; 
private int C_PORT_DWIDTH; 
private int C_PORT_AWIDTH; 
private int C_NUM_WE;

Ports
//connection to global time 
port GTimeSMInterface portGT;

//port to the characterizer 
port cycleLookup portChar;

Figure 2.21: METROPOLIS BRAM Model

The read operation for BRAM uses only one clock edge. If the read address is provided by that 

clock edge the stored data is loaded into the output latches after the RAM access interval has elapsed.

The write operation as mentioned could be in one of three forms. The default mode is writeJirst 

where the data is written to the memory then that data is stored on the data output (as opposed to read-first 

where the “old data” is sent to the output while the new data is stored). No-change maintains the content of 

the output register throughout the the new operation.

In order to get the latency estimates of the memory, one can use estimates from the application

public medium BRAM _^^^^etTOpOllS
implements memory {...} ___

H  XILINX

BRAM
_portCharV _portGT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

61

note [Xil03a] in which FIFO units are created using SelectRAM+ blocks and operate at 200Mhz or with a 

latency of 5ns.

Table 2.8 summarizes the memory interfaces used. These estimates are for each 32-bit read or 

write. memWrite accepts a integer mode argument between 1 and 3 which indicates its operating mode.

Interface Assumptions Cycle Count
memRead() 200Mhz System Clock 1 cycle initiate and~5ns of latency
memWrite(int mode) 200Mhz System Clock 1 cycle initiate and~5ns of latency

Table 2.8: Memory Service Performance Estimation Summary

CoreConnect Quantity Managers

Each of the services mentioned have a corresponding quantity manager (scheduler) associated 

with them. Each of these quantity managers implements the request, resolve, postcond, stable functions 

and their operational semantics as described. The resolve function is specific to each quantity manager and 

reflects the device it is intended to interact with.

Figure 2.22 illustrates some aspects of the Quantity Manager models in METROPOLIS. This figure 

differs from the earlier figures in this chapter in that instead of showing the parameters of the model, the 

interfaces are shown. Parameters belong to models in the scheduled netlist. Not only will those parameters 

be used to configure the simulation, they will also be used to create a programmable device description to 

be used during synthesis (this is shown in Section 2.6). To this end parameters are not of importance for 

scheduling netlist components. However, what is of interest are the interfaces which are called to schedule 

components.

The first set of interfaces are the request(), resolve(), postcond(), and stable() functions discussed. 

Notice that request requires two arguments. One is the event that is scheduling is requested for. The second 

is a request class. A request class consists of a separate set of interfaces and variables.

The request class’ set of interfaces shown are: getRequestEvent(), getserviceType(), getTaskId(), 

getComplexity(), setTaskId(int id), getFlagO, setFlag(int flag), getDeviceId(). These are “getter” and “set­

ter” style functions that allow information to be gathered regarding the service to be scheduled. These inter­

faces involve access to the generated event, type of service, complexity of requested service, id information, 

and synchronization flags.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

62

public quantity SeqQM 
implements QuantityManager
( . . . )

letropolis

flXIUNX

Quantity Manager

portTaskSM

public quantity PLBArb
implements
Quanti tyManager {...}

Request
Class

Interfaces{

Interfaces
public eval void request(event e, 
RequestClass rc) ( 
public update void resolve () {...} 
public update void postcondQ {...} 
public eval boolean stable() {...}

Ports
port StateMedi nmSched[] portTaskSM,
public event getRequestEvent() (...) 
public int getserviceType() (...) 
public int getTaskldO (...) 
public int getComplexity() (...) 
public void setTaskId(int id) (...) 
public int getFlagO (...) 
public void setFlag(int flag) (...) 
public int getDeviceldO (...)

Figure 2.22: M etro po lis  Quantity Manager Model

2.5 FLEET Architecture Modeling Exploration

In addition to programmable architectures, highly concurrent system architectures are excellent 

candidates for this design flow. The reason being that the individually executing processes are very separated 

from the asynchronous switch fabric by which they communicate. This forces a natural separation of the 

computation and communication models. In addition, each computation engine operates using its own 

scheduling mechanism. The specific highly concurrent system architecture this thesis chose to explore is 

the FLEET architecture. FLEET is developed at U.C. Berkeley and Sun Microsystems. Another reason 

for examining this architecture is that it does not have a strict specification on the amount of concurrent 

communication or computation and many aspects of its design are unspecified in general giving the model a 

lot of flexibility in terms of its implementation. FLEET is a class of architectures, not one specific instance. 

It is this underspecification which will allow a microarchitectural exploration of design changes in future 

chapters and investigate the role that refinement can play in the design process.

The simplest description of FLEET is as a collection of SHIPs. SHIPs can specify almost any 

functionality and at the time of writing this thesis, the set of SHIPs is quite unspecified (Adder SHIPs and 

MemoryAccess SHDPs are some examples). SHIPs have an input and output interface. FLEET executes 

only one instruction, the MOV. A MOV specifies a source and destination. The “source” specifies a SHIP 

output address and the “destination” specifies a SHIP input address. The data transfers move throughout 

an asynchronous fabric categorized as the instruction horn, source funnel, and destination hom. This fabric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

63

makes no guarantees which MOV instruction will reach a particular shared destination first. However, it 

does guarantee that instructions issued to a shared source receive data from the SHIP in strict program order 

(this is called the “source sequence guarantee”). MOV instructions are held in code bags and fetched by 

a dedicated Fetch SHIP. The coordination of data through the switch fabric is controlled by special units 

called InBoxes and OutBoxes. For more information please see [Iva06] and [WilOl],

Figure 2.23 illustrates a high level view of a SHIP model. In the center of the figure a SHIP is 

shown. The SHIP type is denoted with an “ID”. This ship will perform some type of computation (add, 

multiply, etc). In order to perform this operation, it will read data from its inputs (on its right side). This 

read be a destructive or non-destructive read. The results of computation are presented on its outputs (left 

side). Boolean values indicate when the input can be consumed and when the output has been produced. 

MOV instructions propagating through the switch fabric (“instruction horn”) will remove the output data 

from the SHIP. Again, this can be a destructive or non-destructive read operation. This removed data enters 

the “source funnel”. This SHIP is denoted as the “source” since it is the “source” of the MOV instruction. 

MOVs to the same source are executed in strict program order. The removed data then enters the “destination 

horn” where it will reach the input of another SHIP. Data sent from two different sources to the same 

destination make no guarantees on the order on which they arrives. In order to remedy this situation, explicit 

coordination SHIPs are used.

Outputs

Sourcel Data Queue

u. get_inst(>-

(Source,
Dest, {0,1})

SHIP

□ □□ Bool OData_Valid □

Inputs

Destl Data Queue

bool is_fuB() 
put_data(data) 
change_flagQ

H □ □ □
o
8 ! 
a
S

DestN |

decoder

(Dest, Data)

□ □ □ □

| Dest,{0,1}, Data | □  □ bool check_dataO 
get_data() 

change_ftag() 
put_data(obj)

□ □ □ □
SourceN

Figure 2.23: FLEET SHIP Architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

64

The switch fabric can be thought of at the system level as a collection of source and destination 

queues (one for each SHIP). In order to replicate its asynchronous nature, a series of handshakes occur in 

which local variables are manipulated using “set” and “get” type functions. An example of these functions 

are shown in Figure 2.23 as check_data(), get_data(), change_flag(), and put_data(obj). The MOV instruction 

is an object which begins with the following information: source, destination, copy/move (non-destructive 

or not). When it reaches the source, the data is appended and all that is kept is the destination information. 

The fact that the switch fabric can be thought of as a set of buffers will be important later in this thesis where 

various implementations of these buffers are presented.

Not shown in Figure 2.23 are objects which coordinate the interaction between the switch fabric 

and the SHIP. These interfaces are called “inboxes” and “outboxes”. Inboxes and outboxes deal with latching 

data as it reaches the ship. These are used to provide a consistent interface to the switch fabric.

For this thesis, SystemC models of FLEET services were created. Specifically the following 

services were produced: Fetch SHIP, Adder SHIP, RecordStore SHIP (intermediate storage), Literal SHIP 

(provides static values), and Instruction Memory. Inboxes, Outboxes, and switch fabric (instruction horn, 

destination horn, and source funnel) were also created but are not strictly considered services since they are 

not exporting their services in such a way that they can be mapped to functional descriptions. This collection 

of services is shown in Figure 2.24. In this figure, the interfaces for each service are shown along with what 

type of data they operate on.

2.6 Synthesis Path for Architecture Services

One of the goals of the proposed flow presented in this thesis is to find a way to take architecture 

service models and produce output which can be used in various synthesis flows. This process has been 

termed, “narrowing the gap”. A desirable outcome of the Xilinx modeling effort is the production of a file 

for the programmable tool flow which does not suffer from the translation gaps present in the naive flow. 

This process will ensure that the the architecture topology created not only matches that of the model used 

in M e t r o p o l is  simulation but also that it has the same parameters which effect the simulation.

Because of the enforcement of parameterized IP like service construction, Xilinx Microprocessor 

Hardware Specification (MHS) file generation is automatic. It consists of the following steps which are 

illustrated in Figure 2.25:

1. Assemble the scheduled netlist - This step consists of making the connections between architecture 

elements the designer is interested in simulating. This is naturally part of the design process and is re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

65

CodeBagDeslmcocfeBagDesc

Which::any

Do ne::token
SHIP

(Fetch) To the fetch
mechanism

Initial SystemC FLEET Service Models
CodeBagDesln::codefiagDesc

Instruction
Memory

Instruction 
Horn

^  _  . >j SHIP
DataOut::/nf <^j (L|tera|)

» «
§ £■ AckAtln:: token 
° 8

DataOut::/n?

* SHIP 
^RecordStore)

AckAtOut ..token 
From Code Bag

Dataln ::/nf 

AckAtOut: .token

LinkOut: .boolean

DataOut::/nf

SHIP
(Adder)

— A —

Destination
Horn

AckAtOutitofren Linkln ..boolean

 <^j DataAin::mf
081 AckDataA::fo/cen

OB2 DataBin::/nf
 [ /  AckDataB::token
OB3 : ' Commandln::inf 

' AckComln::toten

Figure 2.24: FLEET Services Created

qu ired  fo r sim ulation . T he e lem en ts in  th is ne tlis t shou ld  be  se lec ted  from  the p rov ided  METROPOLIS 

lib rary  o f  X ilinx  elem ents.

2. Provide parameters for the architecture component instance - These are required by the construc­

tors of the architecture elements themselves. Examples of these are shown in Figures 2.16, 2.19, and 

2 .21 .

3. Simulate the architecture - This step requires running the parameterized architecture model mapped 

to a functional model. This is the design space exploration process.

4. Decide on the architecture model which meets your goals - This is the outcome of the design space 

exploration method. The rest of this process will use the model chosen in this step.

5. Run “Structure Extractor” script - This script works by traversing the scheduled netlist. It identifies 

components, their parameters, and their connections. The final result is the production of a MHS file.

6 . Take resultant file and feed to Xilinx EDK - This process will produce an FPGA with the specified 

components, topology, and parameterization. All that need be done now is to provide the FPGA with 

the software aspects captured only in the functional model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

5. Gather information and 
parse into appropriate 
tool format 

File for Programmable 
Platform Tool Flow 
(MHS)

I
B. Examine port C. Examine address D, Check port names,
connections to mapping for bus, I/O, instance names, etc for
determine topology, etc. instantiation.

1
2. Provide Service Parameters 3. Simulate Model —►Decide on final topology.

Figure 2.25: Automatic Xilinx MHS Extraction

2.7 Conclusions

This chapter has outlined how a modular architecture modeling style can leverage event based 

simulation and still remain efficient and accurate. A major manifestation of this thesis is a methodology 

for the design and classification of architecture services. This can be achieved in the M e t r o p o l is  design 

environment as described. The realization of this process results in a library of METROPOLIS Xilinx Virtex 

II  Pro components. This design flow includes automatic structural extraction for programmable platform 

tool synthesis and provides a rough estimation methodology for IB M  CoreConnect elements. This chapter 

indicates how estimations can be given for architectural services. The subsequent chapter will demonstrate 

how a characterization method can add accuracy to this data with very little extra effort.

Structure Extractor

A. Identify parameters for 
service. For example MHZ, 
cache settings, etc.

►Type
* Parameters 
► Etc

1. Assemble Netlists

o■no
o
ID

no

Top Level Netlist 
Public netlist XllnxCCArch 
XMnxCCArchSched sehedNetUs^ 
XillnxCCArchScheduling schedullngNetllst 
SchadToQuantityQ jrtateMadla

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

Chapter 3

Architecture Service Characterization

“The first rule o f any technology used in a business is that automation applied to an efficient 
operation will magnify the efficiency. The second is that automation applied to an inefficient 
operation will magnify the inefficiency.” - Bill Gates, Microsoft Co-Founder

In  [Ada04], the relative importance of ESL design tasks was explored for a variety of product 

scenarios. The design tasks identified are “early software development”, “functional verification”, “perfor­

mance analysis”, and “design space exploration”. Crossing the “methodology gap” introduced in Chapter 

1 requires a suitable ESL technology be in place for each of these design tasks. Furthermore, ESL tools 

must address the design tasks in a way that matches the designer’s specific product scenario. An ESL solu­

tion for application specific standard products (ASSPs) will differ from the solution for structured ASICs. 

Figure 3.1 formulates, as an example, an ESL roadmap to support the transition of RTL designers to ESL. 

This illustration is based on Figure 1.2 which illustrated the productivity progress required for ESL adop­

tion. The exact number and sequence of steps varies according to the priorities of a given market segment. 

Each technology that is in place is a step up from RTL to ESL and a complete set of steps is required for a 

smooth transition. If one or more of the steps are missing, the risk of migration will deter designers that are 

not close to their “maximum tolerable design gap”. Designers that reach their maximum tolerance before 

the ESL steps are available are in a pathological scenario because their product is no longer cost effective 

to develop. Naturally, the steps must also occur in a timely manner or system complexity will overtake 

productivity again.

Chapter 2 and this thesis in general deal with the design space exploration step. However this 

chapter focuses on one specific step in the transition from RTL to ESL, ESL performance characteriza­

tion (and analysis). ESL performance characterization allows designers to predict whether a given system 

architecture can meet a requested level of performance. For this process to be truly useful, performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

68

Chapters 2,4,5

Max. D esigner 
Productivity a t ESL

Design Space 
Exploration

This Chapter

Functional
Verification

Early Software 
Development

Max. D esigner 
Productivity a t  RTL

Today Time

Figure 3.1: Transcending RTL Effort with ESL Design Technologies

characterization must be integrated with architecture service modeling. It is in this integration that lies 

this thesis’ contribution.

This chapter will provide a methodology fo r  characterizing architecture services for performance analysis.

This methodology produces results that are highly accurate while maintaining modularity.

Today, the two most common performance metrics are computational throughput and power con­

sumption. In some markets, computational throughput is the dominant metric whilst, in others, power 

consumption takes pole position. In this thesis, computational throughput will be focused on. As with all 

ESL design tasks, performance characterization relies on simulation or analysis of abstract system models 

to derive system performance in a given situation. Abstraction allows the system to be described early and at 

a reasonable cost but it also casts a shadow of doubt over the accuracy of performance characterization data. 

Since the data guide the selection of one system architecture over another, the veracity of data recovered 

from ESL performance characterization techniques must be weighed carefully by the designer. Accuracy is 

paramount for ESL acceptance and legitimacy.

Fear of inaccuracy in ESL performance characterization is a major impediment to the transition 

from RTL to ESL. However it is not the only impediment. Beyond the fundamental abstraction accuracy 

tradeoff, current ESL methods and tools lack a coherent set of performance modeling guidelines. These 

guidelines are important because they allow a single system model to be reused over multiple ESL design 

tasks: the same basic model must be instrumented for performance characterization without significant com­

promise to its usefulness in early software development. Clear guidelines and coding standards also allow 

analytical data to flow out from a model into multiple ESL vendor tools. Close coupling of an instrumen­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

69

tation interface to a single ESL vendor is generally perceived as a bad thing unless the ESL vendor’s tools 

precisely complement the designer’s target market segment. M odularity is param ount for ESL accep­

tance and legitimacy.

As seen in the naive flow in Figure 1.12 in Chapter 1, typically, average and worst case cost esti­

mates for system features are often used today in ESL performance models. The estimated cost model for 

Xilinx Virtex II Pro architecture services was described in Chapter 2. As will be shown, the inaccuracy of 

these measures quickly accumulates in the data recovered from ESL performance analysis tools and restricts 

the designer to measure only the relative performance of two systems. In this chapter, a novel technique is 

described that combines very accurate performance characterizations of a target platform with abstract ar­

chitecture service models in an ESL design environment. This process is an enhancement present in the flow 

proposed in Figure 1.13 and Figure 3.2 highlights and expands this. It is proposed that characterization data 

recovered an from actual target device can be gathered easily and can be annotated into ESL architecture ser­

vice models to enhance the accuracy of performance estimates. In the prototype of this approach, a specific 

modeling environment (METROPOLIS) is selected. One set of target characterizations can be exchanged for 

the estimated data to aid in the selection of a specific instance of the target architecture. All of this effort 

specifically looks to address accuracy as required by the overarching goals of this thesis while maintaining 

modularity.

Chapter 3 -  Architecture
Services Characterization Process Expanded

K  XILINX

Real 
Performance 

Data

2. Create systems

<| Select device 
or family

S1

S2

S3

SN

Characterizer Database

Execution Time 
for Processing

Transaction
Cycles

Physical
Timing

^  Extract data from 
B systems 4  Categorize and 

store data

Figure 3.2: Characterization of Architecture Services in the Proposed Design Flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70

3.0.1 Chapter Organization

The remainder of this chapter is organized as follows: first in Section 3.1, the technique’s general 

process is discussed along with its set of requirements and assumptions. The next section (3.2) offers more 

details on the pre-characterization process by discussing the automatic generation of the group of target 

systems. An important part of this discussion is how to automate the extraction of reusable performance 

data from the target system’s physical design flow. Section 3.3 provides an example of the characterization 

data that can be obtained with this automated method. Storage, organization, and categorization of this data 

are discussed next in Sections 3.4 and 3.5. A Motion-JPEG encoder example of pre-characterizing processor 

systems on Xilinx Virtex Platform FPGAs is contained in Chapter 5 (along with all design examples). This 

chapter concludes by summarizing the results and discussing potential future work.

3.1 Platform Characterization

Platform characterization is the process of systematically measuring a set of properties of a phys­

ical platform or its components. Ultimately, this measurement data will be annotated to ESL architecture 

service models of the platform’s components. Subsequent simulations of the now annotated model yield 

performance estimates that are correlated to the actual target platform. As such, they are more accurate 

than equivalent models annotated with “ballpark” performance metrics. In short, platform characterization 

extracts a relevant group of performance measures from the physical implementation of a platform.

For characterization to be applicable to a system design, an appropriate, measurable implemen­

tation of the target platform must already exist. Clearly, ASIC designs are less amenable to this approach 

because a suitable implementation of the implementation target is not available early enough in the design 

process. Fortunately, programmable platforms based on FPGA technology and ASSP based systems are 

common targets for new design starts [Gar08]. Both technologies are amenable to the proposed approach. 

In the case of an ASSP, its physical properties and system architecture are fixed at fabrication. For FPGAs, 

the physical properties of the platform are fixed at fabrication, but the system architecture is flexible. Clearly 

one cannot apply this technique to the designer’s final platform: the system architecture for the designer’s 

product has not yet been determined. Instead, it is necessary to pre-characterize a broad set of potential 

system architectures that the designer may use. Systems destined for this kind of target require the de­

signer to choose the characterization data that is most representative of the system architecture they intend 

to create. Additionally, the designer can explore the effect of different system architectures through their 

characterizations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

71

Systematically characterizing a target platform and integrating the data into the platform model is 

a three way tradeoff between the following factors:

•  Characterization effort (code size, maintenance, run time);

•  Portability of characterization data (system agnostic design); and

•  Characterization accuracy (correspondence to real systems).

The more accurate a characterization, the more effort it will take to extract and the less portable 

it will be to other system models. Alternatively, a highly portable characterization may not be accurate 

enough to base a design decision on. This process must offer more accuracy than standard transaction level 

approaches [Ada04], require less effort than an RTL approach, and have more portability than an ASIC 

(static architecture) based target. Table 3.1 relates this approach (platform characterization) to RTL and 

transaction level modeling (TLM) with regards to the three main tradeoffs. Each column is an approach and 

each row is a design description. “Low”, “Medium”, and “High” are just used to show the relative ranking 

of each approach in the context of the others.

Tradeoff TLM RTL Platform Characterization
Effort Medium High Medium-Low
Portability Medium Low High
Accuracy Medium-Low High Medium-High

Table 3.1: Performance Characterization Tradeoffs

3.1.1 Characterization Requirements

In order to develop a robust environment for platform characterization processes there are several 

requirements:

•  Direct correlation between platform metrics characterized and architecture service models - the

designer must make sure that the service models developed can be easily paired with characterization 

data and that the models have the essential behaviors which reflect the aspects captured by character­

ization.

•  IP  standardization and reuse - in order to make characterization scalable, designs must use similar 

components. If each design is totally unique and customized there will not be existing information 

regarding its characterization. For example, Xilinx FPGAs accomplish this by employing the IBM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

72

CoreConnect bus and the CoreConnect interfaces on the IPs in their Xilinx Embedded Development 

Kit (EDK). These are industry standard IP used in embedded system design. This requirement will be 

expanded in the next section when extraction is discussed.

•  Tool flow for measuring target performance - whichever platform one chooses to model, the actual 

target device must have a method and tool flow to gather measures of the characterization metrics.

•  System Level Design environment with support for quantity measurements - the framework that 

the characterization data is integrated with must support the measurement of quantities (execution 

time, power, etc). In addition it must allow for the data used to calculate these quantities come from 

an external source.

This chapter will not focus on the details of each requirement. The discussion in this chapter will 

describe characterization in the context of the METROPOLIS design environment [Fel03] and Xilinx Virtex 

II Pro FPGAs. Other design environments and platform types that meet the requirements above may also be 

characterized with this approach.

The next section will discuss how to begin the process of gathering data for use in the characteri­

zation process.

3.2 Extraction of Platform Characterization Data

Extraction of data from the target platform’s physical tool flow is at the heart of this characteriza­

tion methodology. Extraction is a multiphase process concerned with:

•  Selecting a programmable platform family - by selecting a family of products in a programmable 

product line, one increases the opportunity that the extraction will be portable to other systems. Ide­

ally, the selection of a platform family is done without regard to application domain but, in practice, 

this will influence the designer’s decision. An example of a programmable platform family is the 

Xilinx Virtex-4 family of platform FPGAs.

•  Selecting programmable platform components - the properties of the components will vary de­

pending on the granularity and type of the programmable platform. For example an FPGA could 

consist of IP blocks, embedded processing elements, or custom made logic blocks.

• Selecting systems for pre-characterization - from the selected components, assemble a template 

system architecture. From this template architecture create many other permutations of this template. 

In many cases the permutation of the template architecture is automatic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

73

-  Permutations can be made incrementally using various heuristics regarding the desired number 

and types of components. For example, one might want to constrain the number and type of 

embedded processors instantiated or the number of bus masters/slaves. The entire permutation 

space does NOT need to be generated.

•  Independently synthesize and implement each system permutation - the ability to quickly syn­

thesize the created architecture instances is what differentiates programmable platforms from static, 

ASIC like architectures. Each of the systems should be pushed through the entire synthesis and phys­

ical implementation flow (place, route, etc).

•  Extracting desired information from the synthesis process and its associated analysis - the con­

clusion of the synthesis process will give information about each system. Such information includes 

(but is not limited to) various clock cycle values, longest path signal analysis, critical path informa­

tion, signal dependency information, and resource utilization. Standard report processing tools like 

PERL [O’R07] can be used to automatically extract the appropriate information from the platform 

tool reports.

Figure 3.3 illustrates the pre-characterization process. This is a sequence of six steps as shown.

These steps roughly correspond to the steps just outlined (Section 3.2).

3.2.1 Data Extraction Requirements

The issues that need to be observed during the extraction of characterized data are Modularity,

Flexibility, and Scalability. These are important aspects of steps 5 and 6  in Figure 3.3:

•  Modularity - After the initial selection of components and the architecture template, the rest of the 

extraction can be performed by many independent extraction processes. These processes can be dis­

tributed over multiple workstations. This reduces the time to generate A permutations and characterize 

them to a constant time M  where M  is the duration of the longest permutation.

•  Flexibility - Ultimately the extracted characterization data must be correlated to designs during sim­

ulation. Therefore the closer the permutated templates are to the actual designs the better. In most 

cases they will be identical but it is possible that some architecture service model designs will have 

parameters that differ from the characterized system. In the event that the differences do not affect the 

performance under test, the characterization data already obtained can be used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

74

FPGA Programmable Platforms

1. Target specific device 
family (i.e Xilinx Vertex 4).

2. Select platform 
components for J
characterization In 1
target systems.

3. Define a system
architecture
template.

Virtex II 
Pro ASSP1 ASSP2

Device Fabric

Master Master Master Template

-----------------| Slave)

4. Generate multiple permutations of the 
platform components according to the 
architecture template.

.G, WWW
%MMIc_Cn_0

hsH □
i — i 1 •“  1 

eyWwbq.sys.1

I — 1
n n

5. Characterize 
the physical r
properties of l L  .LL 

)  each system that L J L_l H  
was generated,

a r r r f
Analysis

Info
Analysis

Info
Analysis

Into
Analysis

Info
Analysis

Into

/ '^ k c tu a T N  
I  Synthesis 1 
\ R o w J

6. Organize 
characterized 
systems into a 
reusable database.

Platform Characterization Database

Figure 3.3: A Design Flow for Pre-characterizing Programmable Platforms

• Scalability - The extraction process is independent of the storage mechanism for the data so it in 

no way limits the amount of characterization data that can be extracted. Constraints can be added 

or relaxed on the permutations of the initial template. Theoretically, all permutations of the target’s 

component library are candidates for characterization. Even though the characterizations can happen 

at the platform vendor well in advance of the designer using the data, the set of permutations will 

be constrained. This is necessary to maintain a reasonable total runtime for the overall extraction 

process initially. This method does support incremental addition of permutations later if the need 

arises however.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

75

3.3 Example Platform Characterization

To exemplify this process (Sections 3.1 and 3.2), a set of typical FPGA embedded system topolo­

gies was pre-characterized [Dou06a]. Each topology was generated from a template to create a micro­

processor hardware specification (MHS) file for the Xilinx embedded system tool flow. Architectures were 

generated with permutations of the IPs listed in Table 3.2. The table also shows the range in the number of 

IP instances that can be present in each system permutation along with the potential quantities of each. In 

addition to varying the number of these devices, also permuted were design strategies and IP parameters. 

For example, the system’s address decoding strategy was influenced by specifying tight (T) and loose (L) 

ranges in the peripheral memory map. A loose range in the memory map means the base and high addresses 

assigned to the peripheral’s address decoder are wider than the actual number of registers in the peripheral. 

For a tight range, the converse is true. Also permuted was the arbitration policy (registered or combina­

torial) for systems that contained an On-Chip Peripheral Bus (OPB). These axes of exploration were used 

to investigate the relationship between peripherals and the overall system timing behavior. These design 

factors are not usually considered in system characterization. This is due to the fact that they are not tra­

ditionally considered in influencing the system size. System size is a heuristic often used since it has the 

ability to influence system performance (e.g. system clock speed). These often overlooked feature’s affects 

on performance will be of particular interest.

Component MicroBlaze PPC Combo
PowerPC (P) - 1 -2 1 -2

MicroBlaze (M) 1-4 - 1-4
BRAM (B) 1-4 1-4 1 -2  (per bus)
UART (U) 1 -2 1 -2 1 -2  (per bus)
Loose vs. Tight Addressing Yes Yes Yes
Registered or Combinational Arbitration Yes N/A Yes
Total Systems 128 32 256

Table 3.2: Example CoreConnect Based System Permutations for Characterization

The columns of Table 3.2 show three permutation “classes” that were used. The implementation 

target was always a Xilinx XC2VP30 (Virtex II Pro) device. The first class (column MicroBlaze), refers 

to designs where MicroBlaze and OPB were the main processor and bus IPs respectively. The second 

class (column PowerPC) represents PowerPC and Processor Local Bus (PLB) systems. The third class 

(Combo) contain both MicroBlaze and PowerPC. The number of systems generated is significant (but not 

unnecessarily exhaustive) and demonstrates the potential of this method. Note each system permutation can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

76

be characterized independently and hence, each job can be farmed out to a network of workstations. For 

reference, the total runtime to characterize the largest “Combo” system with Xilinx Platform Studio 6.2i on 

a 3GHz Xeon Windows machine with 1 GB of memory was 15 minutes. The physical design tools were run 

with the “high effort” option and a User Constraint File (UCF) that attempts to maximize the system clock 

frequency. An observation of the characterization data shows that as resource usage increases (measured 

by FPGA slice count; a slice contains two 4-input function generators, carry logic, arithmetic logic gates, 

muxes, and two storage elements) the overall system clock frequency decreases. Figure 3.4 shows a graph of 

sample Combo systems, their size, and reported performance. Nested loops of each IP were used to generate 

the system permutations, giving the systems generated predictable increases in area and complexity. The 

major, periodic increase in area is as anticipated and indicates that a MicroBlaze processor was added to 

the system topology and all other peripheral IPs were reset to their lowest number. Note that the graph’s 

performance trace is neither linear nor monotonic. Often area is constant while frequency changes 

drastically. This phenomenon prevents area based frequency estimations. The relationship between the 

system’s area utilization and performance is complex, showing that building a static model is difficult, if at 

all possible, and confirming the hypothesis that actual characterization can provide more accurate results.

Periodic Changes 
Added uBIaze -  2s 
Added BRAM -1s

Combo Frequency and Resource Usage

2000

Increasing
System

Complexity
r r r m fill

37 40 43 46 49 52 58 61

.Si 1000

1 4 7 10 13 16 1
Area Measure Often Plateaus

Slice C ount-*- Frequency

22 25 28 31
Samples

High Spikes in Adjacent Decreasing but not 
(Similar) Samples monotonic or linear

Figure 3.4: Combo Systems Resource Usage and Performance

Table 3.3 highlights an interesting portion of the data collected in the PowerPC class. Each row is 

a PPC system instance: the leftmost columns show the specific IP configuration for the system ((P)owerPC, 

(B)RAM, and (U)ART) and the remaining columns show area usage (slice count), max frequency, and the 

% change (A) between the previous system configuration (representing potentially a small change to the 

system). This thesis contends that a difference of 10% is noteworthy and 15% is equivalent to a device

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

77

speed-grade. Note that there are large frequency swings (14%+) even when there are small (<1%) changes 

in area. This is not intuitive, but seems to correspond to changes in addressing policy (T vs. L) and indicates 

that data gathered in pre-characterization is easy to obtain, not intuitive, and more accurate than analytical 

cost models. The data shown here is not what would be estimated in an area based approach. As a result 

systems using area based techniques would not be nearly as accurate.

p B U Addr. Area f(MHz) MHz A Area A
1 2 1 T 1611 119 16.17% 39.7%
1 2 1 L 1613 1 0 2 -14.07% 0 .1 2 %
1 3 0 T 1334 117 14.56% -17.29%
1 3 0 L 1337 95 -18.57% 0 .2 2 %
1 3 1 T 1787 1 2 0 26.04% 33.65%

Table 3.3: Non-linear Performance Observed in PPC Systems

Figure 3.5 illustrates Table 3.3 and shows area and separate performance traces for PPC systems 

in two addressing range styles (one tight and one loose). One set of data points correspond to area measure­

ments and the other reflect frequency measurements. The graph demonstrates that whilst area is essentially 

equivalent (the area curves overlap visually), there are clear points in each performance trace with deviations 

greater than 1 0 %.

PowerPC System Address Changes

10%+ Delta

O H 5 0 0

Loose Addr Slices-*. Sample
Tight Addr Slices-*-Area Curves Overlap

^Top Two 
1 5  C urves

Loose Addr MHZ 
Tight Addr MHZ

Figure 3.5: PowerPC System Performance Analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

78

3.4 Organization of Platform Characterization Data

The organization of the raw, extracted data is the process of categorizing the information in such 

a way that system simulation remains efficient, data remains portable, and flexible data interactions can be 

explored. This is a very important part of the characterization process and if a poor job is done in this stage, 

many of the benefits of the previous efforts will be lost. This is an aspect of step 6  in Figure 3.3. More 

concisely the goals are thus:

•  Maintain system efficiency - if the simulation performance of the system using estimated data (a 

naive method) is Pe and the performance of the system using characterized data (the proposed method) 

is Pc, the following relation must hold, Pc >  Pe- Performance in this case is a measure of simula­

tion effort or cycles consumed which directly affect the execution time of the simulation or runtime 

memory requirement (higher performance results in lower execution time or lower runtime memory 

requirement).

•  Portable Data - in order to reuse data, it must be stored in such a way that it is maximally portable 

amongst various models. This requires three things: 1) A standard interface for accessing the stored 

data 2) A common data format for the stored data and 3) The ability for the data set to grow over time.

•  Flexible Data Interaction - data interaction refers to the ability to allow many ways in which data 

can interact in order to give information regarding the performance of the simulation. For example 

if data regarding transactions per instruction can be combined with information regarding cycles per 

transaction one can determine the cycles per instruction. Another example is that if Transaction i can 

use signals Si or S2 and it is known that Si resides along a longer path than S2 , Transaction! can 

utilize S2 for greater performance. It is best to place no restriction on data interaction in so much as it 

does not conflict with any of the other characterization goals.

3.4.1 Data Categorization

With the goals defined for “characterization data organization” the second aspect that must be 

determined is how data is categorized. Data can be categorized in many ways depending on what is be­

ing modeled. For the sake of this discussion, it will be in the context of what is required typically for 

programmable architecture service models of embedded systems. To this end there are three categories:

•  Physical Timing - this information details the physical time for signals to propagate through a sys­

tem. Typically this information is gathered via techniques such as static timing analysis or other

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

79

combinational or sequential logic design techniques to determine clock cycle or other signal delays.

•  Transaction Timing - this information is a unit of measure which details the latency or stages of 

a transaction. A transaction is an interaction between computational units in point to point manner 

or through other communication mechanisms (buses, switches, etc). This could be a cycle count in 

reference to a particular global clock which determines the overall speed of the system. Or it could 

alternatively be an asynchronous measure.

•  Computation Timing - this information is regarding the computation time taken by a specific com­

putation unit. This could be both HW and/or SW based routines. For example it could be a cycle 

count given by the time a HW unit (Adder, Shifter, etc) takes to complete its operation. Alternately 

it could be the cycle time taken by a particular software routine (Discreet Cosine Transform perhaps) 

running on a particular embedded processor.

These three areas interact to give estimated performance for a system under simulation. The 

following example (Table 3.4) shows how all three areas can be used along with their ability to flexibility 

interact to provide performance analysis:

Instruction Timing Categorization Performance Implication
read(0x64,10B) Transaction -1  cycle/Byte 1 0  cycles
execute(FFT) Computation - FFT 5 Cycles 5 cycles
write(0x78, 20B) Transaction - 2 cycles/Byte 40 cycles
Total Cycles Physical - Icycle/lOns 550ns

Table 3.4: Sample Simulation Using Characterization Data

The leftmost column provides three different instructions. The center column gives the charac­

terization of each instruction and what category it falls under. The rightmost column gives the resultant 

performance implication given the instruction and its characterization. The final row illustrates the execu­

tion time of this sequence of instructions given the physical time of one execution cycle.

3.4.2 Data Storage Structure

Finally, it must be decided what actual structure will hold the now categorized, characterized data. 

The primary concerns are related to the goals initially mentioned in this chapter regarding portability and 

efficiency. This should be a structure that can grow to accommodate more entries. Ultimately what structure 

will be used is determined by which system level design environments are intended to be used. However the 

follow issues should be considered:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

80

•  What is the overhead associated with accessing (reading) the data?

•  What is the overhead associated with storing (writing) the data? Both this and the reading overhead 

are affected by code size and complexity and ultimately affect simulation speed.

•  Can data be reorganized incrementally? This is of use if new data is added or the categorization 

mechanism changes.

•  Can data be quickly sorted? Searched? This can increase the speed of access and allows exotic 

relationships between data elements and their use.

More specifics on data structures for characterization data will be touched on in the next section 

when specific example executions are discussed. For now this thesis leaves the reader with an illustration of 

an abstract structure in Figure 3.6. The left hand side of the illustration shows the data categorization and in 

which stage of the design flow that data is generated. Shown are the three types of data categories as well 

as where that data is collected. Notice that each element is connected to the others, illustrating that they 

should be flexible in their interaction. Also there should be an input interface (to enter data), as well as an 

output interface to retrieve the data. The right hand side shows a sample entry in the data storage structure 

where each system categorized has its own index and may have independent or shared entries in the storage 

structure. With each index there is associated physical timing, computation timing, and transaction timing 

data. This data can be shared or be unique to a particular index. Additionally each index is not required to 

have an explicit entry for each category and can utilize a globally stored default value.

3.5 Integration of Platform Characterization and Architectural Services

Once the data has been extracted and organized it now must be integrated into a system level 

design environment for simulation. The following discussion will highlight the key issues associated with 

this integration and provide an example of each in the M e t r o p o l is  environment.

•  Separation of architecture models and their scheduling - this requirement allows for the data struc­

ture containing the extracted data to be independently added and modified apart from the actual sys­

tem.

-  In M e t r o p o l i s , architecture models are a combination of two netlists (as described in Chapter 

2). The first netlist is called the scheduled netlist and contains the topology and components 

that make the architecture instance (CPUs, BUS, etc). The other netlist is the scheduling netlist

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

81

Example Storage Structure

From:
Characterization Flow

From:
Characterization Flow 
User input 
Specifications

Flexible
Interaction

Physical Timing

Computation
Timing

Transaction
Timing

From:
Characterization Flow 
User input 
Instruction Set Simulator (ISS)

Input Interface (Index)

System 1 System N 

1
4.2ns 1 | 3.8ns
4ns I | 3.2ns ^

ISS u P ro d
FFT 20 Cycles 
Filter 35 Cycles

ISS uProc2
FFT 10 Cycles ^  

Filter 30 Cycles

Read « {ACK, 
Trans, Data} Ml II 1
Write = (ACK, 
Data, ACK}

InULL

Index
Method

> Physical 
"V Tim ing
Independent Entries

}Computation
Timing

Shared Entry

} Transaction 
Timing

Example Entry in 
the Storage 

Structure

Not explicitly 
provided

Output Interface (Retrieve)

Figure 3.6: Characterized Data Organization Proposal

and contains schedulers for each of the components in the scheduled netlist. When multiple 

requests for a resource are made in the scheduled netlist, it is the other netlist which resolves the 

conflict (according to any number of algorithms). The schedulers themselves are called quantity 

managers since the effect of scheduling is access to update a quantity (time, power, etc) of the 

simulation. See [Abh04] for more information on M e t r o p o l is  architecture modeling.

•  Ability to differentiate concurrent and sequential requests for resources - the simulation must be 

able to determine if requests for architecture resources occur simultaneously and are allowed to be 

concurrent or if they should be sequential and if so what is the ordering. This is important since each 

request will be accessing characterization data and accumulating simulation performance information 

which may be order dependent.

-  In METROPOLIS there is a resolve() phase during simulation. This is the portion of simulation 

where scheduling occurs. This scheduling selects from multiple requests for shared resources. 

This is done by quantity managers in METROPOLIS.

•  Simulation step to annotate data - during simulation there should be a distinct and discernible time 

(simulation step) where data is annotated with characterized data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

82

-  M e t r o p o l is  is an event based framework which generates events in response to functional 

stimulus. These events are easily isolated and augmented with information from characterization 

during scheduling (with the request() interface). This annotated data is stored in the event’s 

“value” set. Events are defined as demonstrated by the tagged-signal model of [Edw98],

The overall message of this integration discussion is that once the data is ready to be integrated 

into the design environment 1) it must be able to be added non-destructively 2 ) it must be able to augment 

existing simulation information detailing performance 3) the simulation must be able to correctly recognize 

concurrent and sequential interactions/requests for the characterized data.

3.5.1 Sample Annotation Semantics

This final section will demonstrate an example execution of a system integrated with the charac­

terized data. This will be based on the M e t r o p o l is  design environment. In this case, the structure holding 

the data is a hash table-like structure indexed by information regarding the topology of the system. Figure 

3.7 illustrates these steps in METROPOLIS. Each step in the figure corresponds to a step below.

1. An active METROPOLIS architecture thread generates an event, e. This event represents a request 

for a service. This event will have been generated by a functional model mapped to this architecture 

needing a service (CPU, BUS, etc). This event can represent a transaction or computation request. In 

the case of the figure, the event is generated by a thread.serviceRead() interface call.

2. The service will make a request to its scheduler, with the request(e) method. This passes the request 

from the scheduled netlist to the scheduling netlist where e joins a list of pending events. While this 

event is waiting scheduling, the task that generated it remains blocked (unable to proceed). In the 

figure this is the serviceScheduler.request(e) call.

3. Once all events that can be generated for this simulation step have been generated, the simulation 

proceeds to a resolve() phase where scheduling decisions (algorithms vary depending on the service 

they schedule) are made which remove select events from the pending lists. The figure illustrates this 

in the scheduling netlist’s serviceScheduler.resolve(e) object call.

4. serviceScheduler.Annotate(e) selects events by indexing the characterized database according to event 

information. In practice more than just the event is passed. In addition a “request class” is passed also 

to provide information for indexing the database. This allows access to simulation quantities (like 

simulation global time) which can now be influenced by annotated events. Note that this requires no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

83

more impact on simulation performance as compared to estimated data (a requirement of our 

methodology; Pc >  Pe).

5. Report back to the task that it can now continue (unblock the thread). This is the communication 

between the scheduler and the thread, unBlock(e) in the figure. This process is actually communicating 

to the process through a statemedia using the setMustDo() function.

6 . The process can occur recursively when transactions like read() use CPU, BUS, and MEM ser­

vices. These calls would generate their own sets of events. The figure illustrates a potential nextSer- 

vice.serviceRead() call by the existing service which would initiate a similar sequence once again 

further down the netlist.

thread.Read() {
thread.serviceRead();

serviceScheduler.resolve(){
//Task Scheduling Algorithm

>

P C k (e )  /  T / ^ v j ce3 Cheduler.resolve(e)

0
1. thread.serviceRead()

Service
ServiceScheduler

2.serviceScheduler.request(e)
service.Read(){

serviceScheduler.request(e) 
nextService.serviceRead(); 
. . . . }

Update 
Global 

Simulation 
Time

4. serviceScheduler.Annotate(e)

6. nextService.serviceRead() 
Scheduled Netlist Scheduling Netlist

Figure 3.7: M e t r o p o l is  Sample Annotation Semantics Using Characterized Data

3.6 Conclusions

Before the gap between designer productivity and design complexity becomes an impassible 

chasm, architects must complete a transition from RTL to ESL design methods. However, a complete 

path from RTL to ESL has not yet been established. The reasons for the ESL methodology gap include the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

84

difficulty of isolating a set of design technologies that solve ESL design problems for the diverse range of 

system types. Designers desirous of ESL performance analysis tools are also wary of the accuracy of the 

data they can recover from existing tools and models.

In this chapter, an ESL performance analysis technology for programmable platforms was pre­

sented. This approach united characterizations of actual platforms with abstract designer model simula­

tions. The result is an integrated approach to ESL performance modeling that increases the accuracy of 

performance estimates. This use of METROPOLIS quantity managers also eases design space exploration by 

separating the architectural models of a system from the specific timing model used during system simula­

tion.

Future efforts with system level pre-characterization will begin with a deeper exploration of the 

tradeoff between accuracy and a given system model’s level of abstraction. Additionally, formal techniques 

can be applied to analyze the bounds of our approach which is currently simulation based.

With both the modeling and characterization of programmable architecture models described. The 

next chapter will explore how one can verify properties of these models as they are successively refined from 

abstract specifications to actual implementations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

85

Chapter 4

System Level Service Refinement

“Program construction consists o f a sequence o f refinement steps.” - Niklaus Wirth, Designer 
o f Pascal

Increasing abstraction as shown in Chapters 1 and 2  is a powerful tool in the fight against in­

creased complexity. Platform-Based design explicitly accommodates various levels of abstraction in what 

has been termed, “the fractal nature” of the design process [KurOO]. This technique is particularly useful 

for architectural servicesand the platforms that result when functional descriptions are mapped to those ser­

vices. Working at various levels of abstraction is useful also in various synthesis situations. For example, 

one may want to work at various abstraction levels for the purposes of optimization. Logic minimization 

of a gate level netlist as opposed to a more structural netlist is an opportunity for optimization. Analysis of 

design decisions during design space exploration, design transformation from one model of computation to 

another, or the introduction of physical and implementation concerns, such as wire delays, are all additional 

reasons for abstraction. When deciding upon the initial abstraction level or the move to another abstraction 

level, it becomes critical that one can ensure that newly introduced models correspond to their more or less 

abstract counterparts. Therefore three issues become paramount:

1. What is the behavior that should be required to correspond between the abstract and refined systems?

2. How can that behavior be captured efficiently and formally ?

3. How can behaviors once captured be compared?

This chapter will identify three strategies to classify, capture, and verify the behavior o f system level 

architecture service model. The verification process will be involved in demonstrating that two systems at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

86

various levels o f abstraction can be safely used in place o f each other during simulation without damaging

the functionality o f the overall design.

Figure 4.1 highlights how refinement plays a part in the proposed design flow first outlined in 

Chapter 1. In this picture, one can see that refinement is intended to be coupled with the design space ex­

ploration process. It is used to ensure that as the design moves down abstraction levels, successively refined 

models maintain particular properties important to correct system level operation. Specifically structural 

modifications as well as component modifications should be verified.

Process Expanded ............ ................Chapter 4 -  System Level 
Service Refinement

P1 P3
Component -

. Identify changes to 
’ 1 • be made (structural

or component)
- Structural P3

P2 |—

Abstract

) Refinement Yes? 
Question No?

p i  —► (w )—► P3

P2  ►(“*) JL
Refined ( * * )

P4

P2
(More 

Functionality)

C. Intra-component 
changes (Interface 
based)

p i  — P31

A. Inter-component 
structural changes 
(compositional 
component based)

— A
2  Run verification V ” * / 1  C >  scheduling

tools > /  components (event
^Scheduled | Sehtduilng based)

B. Structural 
changes between 
scheduled and

Figure 4.1: System Level Service Refinement in the Proposed Design Flow

In order to clarify refinement’s place in the design flow, consider this example scenario. A designer 

using the M e t r o p o l is  design methodology wishes to provide various architectural service instances upon 

which to map a functional description. These services could represent new processing elements (such as a 

CPU) or storage elements (such as memory). These architecture services may each be unique or each may 

be incremental additions to existing services as well. Those falling into the latter category are considered 

refined services. The system composed of both new and incrementally modified services is a refined archi­

tecture. This refinement is of interest since these changes represent a variety of intentions on the part of 

the designer. Refinement attempts to either preserve or introduce new properties to the architecture, raise 

or lower the abstraction level, or introduce or remove elements bringing it either closer or further from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

87

requirements of synthesis. Due to the effort often associated with creating entirely new models, refinements 

are often the most common architecture service modifications. Target architectures tend to be a family of 

architectures as opposed to entirely new designs. Additionally, testing effort is very valuable and it is desir­

able to repeat as little of this as possible when designing new systems. It is with all these factors in mind 

that this thesis examines three methodologies in which to introduce, categorize, create, and test architecture 

service refinements. Ultimately I will provide the results of these methodologies in Chapter 5.

4.0.1 Chapter Organization

Before beginning any discussion, Section 4.1 will provide the required background and definitions. 

This section is followed by an overview and classification of related work in Section 4.2

The remaining organization of this chapter is such that the reader is introduced to the three re­

finement methods in order of ascending specificity. In Section 4.3 an event based structure for refinement 

in illustrated. This method uses events to define system behavior and demonstrates how properties can be 

defined over these events. Section 4.4 builds on the previous section by demonstrating how traditional in­

terface based refinement techniques used in the formal verification community can be utilized in a design 

environment such as M etro po lis  using events. Finally Section 4.5 shows how a very specific structure 

(labeled fair transition systems) can be effectively used to represent communication structures in systems 

by using events as well in compositional component based refinement. Finally, conclusions are provided in 

Section 4.6.

4.1 Background and Basic Definitions

While it is impossible to make this thesis completely self contained, it is the goal of this section 

to at least provide the intended audience with the necessary definitions to understand the majority of this 

chapter. When the definitions are not unique to this thesis (which is the case regarding much of the un­

derlying theory) citations are given. It is important that the reader also examine the background and basic 

definitions provided in Chapters 1, 2, and 3 since they will not be repeated here and their understanding is 

often assumed.

To start any conversation which attempts to relate two or more systems to each other, the concept 

of equivalence versus refinement is critical.

Definition 4.1.1 Equivalence - The property describing two systems which cannot be distinguished from 

one another when each is provided the same input stimulus or operating environment. For example two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

combination circuits such as AB or AB + ABC are equivalent since they have the same truth table. Two 

states in a FSM are equivalent i f  fo r  any input sequence the set o f observable output values which result as 

the FSM transitions does not differ.

Definition 4.1.2 Refinement - The process o f o f removing behaviors o f a system through the introduction 

or removal o f components. Typically this process is removing over specification or nondeterminism in a 

design as it proceeds to implementation. An example is developing a USB device from the USB spec.

This difference between the refinement and equivalence definitions is important and should not 

be discounted. This thesis will be involved in verifying refinement (not equivalence) between two or more 

platforms. A system is refined by the existence of a refined architecture model (and its refined services) as 

defined:

Definition 4.1.3 Refined Service - A service which provides a subset o f the interface methods provided 

by its more abstract counterpart. This subset will result in fewer possible behaviors. This service may be 

composed o f more or less components than the more abstract service.

Definition 4.1.4 Refined Architecture - An architecture model having one or more refined services.

These definitions provide a sufficient starting point for the discussion to follow. Terms such as 

architecture, service, and system have been defined earlier as mentioned.

4.1.1 State Equivalence

State equivalence is a well defined concept. It is often applied to finite state machine optimization. 

The general notion is that two states are equivalent (indistinguishable) if upon applying any input sequence 

of any length to one state, the output sequence produced is the same as having started from the other state 

using the same input sequence. Groups of equivalence states are called equivalence classes. More formally:

Definition 4.1.5 State Equivalence - Two states Si and S2 are equivalent if for every possible input se­

quence X: 1) the corresponding output sequence Z\ — Z2 and 2) the corresponding next states =  Sj.

State equivalence is important because, certain refinements can be defined loosely as requiring 

that every state in the refined model, having an equivalent state in the abstract model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

89

4.1.2 Trace Containment

Trace containment is a more specific refinement definition requiring that behaviors be captured as 

trace sequences. This process will be used in the discussion of interface based refinement. Formally it can 

be described in the following manner taken from [Raj03].

A model is generically defined as an object which can generate a set of finite sequences of behav­

iors, B. One of these possible finite sequences, B, is considered a trace, a. Given a model X  and a model 

Y, X  refines the model Y, denoted X <Ref  Y  if given a trace a of X  then the projection a[ObsY] is a trace 

of 7. A trace, a is considered a sequenced set of observable values for a finite execution of the module. A 

projection of a trace, a[ObsY], is the trace produced on Module Y  for the execution which created a over the 

observable variables of Y. An observable variable is one which can be read by the surrounding environment 

or other objects. The two modules X  and Y are trace equivalent, X  ~ Ref  Y, if X  -<Ref  Y  and Y <Ref  X.

The answer to this particular refinement problem (X,y) is YES if X refines Y and otherwise NO.

4.1.3 Synchronized Parallel Composition

Synchronized Parallel Composition is a concept used to create systems specified using sets of fi­

nite state machine based descriptions. The operation of these composed systems is described using what is 

called synchronization. Synchronization is the process of explicitly denoting the requirements for individual 

component state transitions based on the state of other components in the system. For example, a pedes­

trian walk signal can be activated if another component (traffic light) is in the “red” state. The advantage 

of this approach is that each individual component is relatively simple but the composition of the systems 

and corresponding synchronization can be quite sophisticated. Ideally the small component operation can 

be shown to be sound and therefore composition itself is sound if created following a set of requirements. 

These concepts will be useful for the third method proposed (compositional component based refinement) 

in Section 4.5. The definitions in this section are reproduced almost verbatim from [Olg03a].

Let Var = {Xi ...,X„} be a finite set of variables with their respective domains H > i L e t  AP be
d e f

a set of atomic propositions ap = (X,- = v) with X,- € Var and v e  D,-. Let SP be a set of state propositions

sp defined by the following grammar: sp\, spt ::= ap | -> sp\ \ sp\ V sp2 -

Definition 4.1.6 Interpreted Labeled Transition Systems (LTS) - A interpreted labeled transition system 

S over Var is a tuple <Q, Qo, E, T, I > where:

- Q is a set o f states,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

90

- Q o Q Q  is a set o f initial states,

- E is a finite set o f transition labels or actions,

- T C Q  x E  x O is a labeled transition relation, and

- I : Q —> SP is an interpretation o f each state on the system variables.

Definition 4.1.7 Sum of Two LTSs - Let S\ = <Q\, Qo\, E\, T\, l\>  and S2 = <Qi, Q02 , E2 , T2, h >  be 

two transition systems over Var. The sum o fS \ and Si, written Si W Si is <Qi U Qi, Q01 U Qoi, E\ U Ei, 

T\ U Ti, l\i>  where In  is defined by:

ln(q)
h { q ) ifq £ Q \,  

h{q)ifq  e  Qi,

Moreover, Vq\. q\ G Qi, Vq2. <?2 G Q2 • (h(qi) = h(q2 > &  qi = qi)-

Definition 4.1.8 Synchronization of n Components - Let S\,...,Sn be n components. A synchronization 

Synch is a set o f elements (a  when p) where:

- a  = (e\,...,en) € n"=i (Li U {-}), where - is afictive action “skip”

- p is  a state proposition on the component variables.

Definition 4.1.9 Context-in Component - Let S\,...,Sn be n components. Let Synch be their synchroniza­

tion. A context-in component S[ is defined by the tuple <Q\, <2o,-, Lj, Ti, Fj> where:

- Q\ C <2i X ... x Qn with (qi,...qn) € Q\,

- Go, Q G01 x ... x Q0n,

- = {(eh ...,ei,...,en) \ (((eh ...,ei,...,en) whenp) G Synch) f\ (a  G Ef },

- lci((qx,~,qn)) = h(qx)N  -  A U q n)
- Tj C Q- x £y x Qfi with 

((qh ...,qn), (eh ...,en), (q\,...,q'n)) in 7J iff:

- ((e\,...,en) whenp) G Synch,

- lci((q \,-,q n)) =>P, and

- Vk.(k € { l ,—,n} => ((ek = - f \ q k = qk) \J (ek f -  /\ (qk, ek, q'k) G Tk))).

Definition 4.1.10 Synchronized Composition of n Components - Let S\,...,Sn be n components and Synch 

their synchronization. Let Sf,...,S^ be their respective context-in components. The synchronized parallel 

composition ofS\,...,Sn under Synch is defined by:

hynch(Sx.....Sn) =f  W'UfSfj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

Definition 4.1.11 Gluing Relation - Let GI be a gluing invariant between SR and SA. The states qR G Qr 

and qA G QA are glued, written qR ft qA, ifflR(qR) /\G I^>  lA(qA).

4.2 Related Work

The idea of refinement and its verification is not new and is not limited to the notion of archi­

tectural services. In fact, much of the work in refinement verification is concerned with software design. 

While software design focuses on program correctness, this thesis is more focused on system functionality. 

Correctness assumes a desired result where functionality assumes the validity of several outcomes. This 

is a subtle difference but can be seen as two similar problems. The former wants to ensure that the sys­

tem arrives at a particular state(s) whereas the later wants to avoid a particular state(s). Aspects of this 

are built upon the fact that there are “don’t care” states and nondeterminism in architecture models. This 

section will provide an overview of the existing work regarding refinement verification of architectural ser­

vices at the system level. This section will be used to highlight the unique contributions of my proposed 

approach and clearly define which aspects of this problem have been addressed. It should naturally be 

mentioned that there are many types of verification methods related to electronic system design. These in­

clude simulation based approaches, model checking [Edm93], symbolic simulation [Ran91], combinational 

equivalence checking, sequential equivalence checking [Mah05], statecharts [Dav87], and process algebras 

(CSP)[Cha78], (ACP)[Jan85], and Robin Milner’s (CCS) for example. The work below in many cases uses 

concepts from these areas as a foundation.

Refinement verification work has been proposed in a number of forms. From these forms, re­

finement verification can be broadly categorized as style/pattern based, event based, and interface based. 

Additionally, in work by Gong et. al. [Jie97], there is a discussion of refinements as control related, data 

related, or architecture related. The first classification (control related) denotes that execution sequence is to 

be preserved when the design is refined over multiple components. The second classification (data related) 

denotes that data accesses must be updated appropriately when the design is refined. The final classifica­

tion (architecture related) denotes the ability to perform changes to the communication structures between 

components (buses for example) which facilitate communication during the refinement process.

Table 4.1 uses these two groups of classification schemes to organize the approaches discussed in 

this section as well. Firstly each approach is grouped according to its place in the first categorization (style, 

event, interface, other). Then each approach is assigned a “+” (focused on), (not focused on), or “?” (not 

applicable or known) in each area of the later classification regarding control, data, and architecture. The 

lack of support for these constructs does not indicate a particular weakness but rather serves to illustrate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

92

intended purpose and scope of each tool. Additionally a very brief description is provided as well for each 

tool.

Control Data Architecture Description
Style/Pattern Based
ForSyDe [Ing04] + _ + Transformation Rules
M e t r o p o l is + - + TTL vs. Yapi
Model Algebra [Sam06] + + + Algebraic Rules
Moriconi [Mar95] + - - Six Design Patterns
Virtual Prototyping [Pav05] + + + Parameter and Data Streams
Event Based
M e t r o p o l is + ? + Tagged Signal Model
Rapide [Dav95] + - + Event Pattern Based EADL
Interface Based
M e t r o p o l is + ? + Function Calls on Ports
M e t r o  II + + + Required and Provided Services
Reactive Modules [Raj99] + - - Hierarchical Verification
Signal [Jea03] + + ? Polychrony/Flow Equivalence
SPADE [PauOlaJ/Sesame [And06] + + + Kahn Process Network Based
SynCo [Olg03b] + - ? Compositional Components/LTS
Others
Obj. Orient, in C2 [Nen96] ? _ + Explicit Subtype Relationships

Table 4.1: Refinement Verification Related Work Classification

Style Based Refinement Related Work

Style based refinement requires that rules be developed a priori defining what is considered refine­

ment. Each style has associated with it a set of rules. Once those rules have been shown to be sound on one 

set of component style instances, the components can then be reused or substituted for many other compo­

nents which use that same style. Often rules can be used to convert components in one style to another style. 

Styles which can undergo this transformation are often called substyles. Style based refinement is often 

called pattern based refinement as it categorizes styles as groups of compositional patterns. Valid composi­

tion of these patterns introduces corresponding compositional rules. A style based approach is shown in the 

work of Moriconi [Mar95]. In this work, six patterns are proposed for classifying the refinement of compo­

nents, connectors, and interfaces. These patterns are batch sequential, control transfer, dataflow, functional, 

process pipeline, and shared memory. Example applications of these rules are restrictions placed on the 

architectures regarding variable types, access to variables, and ordering of variable access. A drawback of 

this approach is that all system instances may not fall into a given style thus limiting the types of systems 

expressed. Another pattern based approach is called “Virtual Prototypes” [Pav05]. This work creates ver­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

93

ification patterns from an algorithmic level description (considered their highest level of abstraction) and 

automatically applies these patterns to lower level models. These patterns can be viewed as streams. There 

are both data-in and data-out streams as well as parameter-in and parameter-out streams. The parameter-in 

streams set up the device under test and the data-in streams stimulate it. The “out” patterns detail what 

results are expected for each verification “in ” pattern. A drawback of this method is that an algorithmic pat­

tern must be created potentially for each device under verification. While some devices may share patterns, 

this process is potentially very user intensive. Finally Sander and Jantsch present ForSyDe [Ing04] which 

uses what it calls Transformation Rules in order to perform refinement. These rules denote specifically how 

one process network (the model of computation in ForSyDe) maps to another process network. It requires 

that they have the same input input signals and the same number of output signals. These transformations 

can be either semantic preserving which do not change the meaning of the model, or “design decisions” 

which do. All of these transformations form a transformation library. While not necessarily a drawback, 

this work does not make an explicit separation of architectural services from the functionality of the system. 

For an overall assessment of style and pattern based approaches see [Dav96] which explains in more detail 

these types of systems. In general it states that style and pattern based approaches need to accommodate a 

large set of system instances to be useful, that style classification is useful if the styles are chosen carefully, 

and that refinement can be made more flexible if styles are accompanied by a set of properties of interest 

(those which should be maintained during refinement). While style/pattern approaches are discussed to give 

a complete survey of the field, a style/pattern based approach will not be presented in detail in this thesis 

but is possible in METROPOLIS as shown in Figure 4.2 using the REFINE keyword. This is a very sim­

ple re-routing of the connections in a netlists. This re-routing requires that the port configurations of the 

components being swapped match.

There are naturally attempts to prove equivalence (not refinement) between models at various lev­

els of abstraction. Algebraic approaches [Sam06] appear promising. This is ultimately also a pattern type 

approach. This work describes systems in an algebra which consists of behaviors, channels, variables, in­

terfaces, ports, and labels. From a set of roughly 7 rules, transformations can be made on models composed 

of those components. These rules themselves have been shown to be sound and thus the transformations 

made by these rules are sounds. Our methodology is amenable to such an approach as we can describe 

the architecture model (or a functional model) in this algebra. Work is currently being done in M etro  

II which will facilitate this process by creating libraries of the required components corresponding to the 

algebraic rules. Drawbacks of this approach are that it requires models to be described in one model of com­

putation (dataflow), use specific components, and there is not a canonical representation for two equivalent 

architectures (i.e. there exist false negatives regarding two equivalent models).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

An example of METROPOLIS style refinement involves the YAPI (Y-Chart API) [E. 00] and the 

TTL (Task Transaction Level) libraries which are provided as part of its distribution. These are both process 

network based FIFO libraries. In M et r o po l is , the YAPI library has unbounded FIFO-like elements while 

the TTL library attempts to be a refined version with boundedfifo, yapi2TTL, TTLlyapi, and rdwrthreshold 

elements. The boundedfifo simply is the storage mechanism now with a fixed size. The rdwrthreshold 

element acts as the coordination for access to this element. Finally, yapi2Tl'L and TTL2yapi are used for 

the refinement interface in the refined netlist similar to the example in Figure 4.2.

During the use of these elements in a multi-media application exercise in M e t r o po l is , several 

bugs in the design were discovered. This drew attention to the fact that refinement checking is a crucial 

element as the design process becomes more complex and specifications are adhered to in an ad hoc manner.

//In Metropolis Netlist

/♦Introduce to the netlist(this), 
an object for refinement(ref_obj)*/ 
refine(ref_obj,this);

/♦Redefine the connections
so that the refinement input
and outputs map to the abstracts ports*/
I T  ‘ref_obj’’ is TTL, ‘‘abs_X’’ ports are YAPI's 
refineconnect(this,src_connect(ref_obj,out), 

port(ref_obj,out),abs_out); 
refineconnect(this,src_connect(ref_obj,in), 

port(ref_obj,in),abs_in);

Figure 4.2: M etro po lis  Style Refinement Example

Event Based Refinement Related Work

Event based refinement use events to define how architectures are related to each other. While this 

idea could be used to mimic a style or pattern based approach (one which uses event patterns for instance), 

in practice event based approaches allow a much wider variety of systems to be related. For example, an 

architecture at a high level of abstraction may require just one of its events to be related to a set of events 

in a model created at a lower level of abstraction. A bus read event in the abstract model may correlate to 

a request, ack, and read set of events in the refinement. Events also are typically part of the operational 

semantics of the architectures they are part of. Therefore, event based refinement can also be used to specify

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

95

a specific operation or a restriction on system operation. For example a particular refinement may require the 

notification of an event which triggers one behavior of many possible behaviors. The abstract model would 

relax that notification requirement allowing more behaviors. An event based approach is shown in Rapide 

[Dav95]. Rapide is an executable architecture definition language (EADL). Rapide uses “event patterns” 

to relate architectures together during mapping. This should not be confused with patterns as previously 

defined however, as Rapide uses these patterns or maps to trigger events or generate events. The event based 

approach proposed in this work uses events to define properties. These properties could be seen as patterns 

defined over a set of events. These properties use events specifically belonging to components depending on 

their role in the simulation (either part of the scheduling or scheduled mechanism). This is different from 

Rapide which does not make such a distinction. One can not directly make a comparison between the two 

approaches outside of the fact that both require the notion of an event object defined as a tuple containing 

more than one field of data.

Interface Based Refinement Related Work

Interface based refinement is premised on the fact that most modeling systems encapsulate services 

through the use of interfaces. These interfaces often are a function of the language that the system is 

described in. SystemC and Java for instance have the idea of interface functions for classes. Often times 

however, the term interface denotes the legal interaction points between models and other models or models 

and their environment. Refinement which focuses on these points is interface refinement. Typically changes 

to the model which cannot be observed at the interface are not considered in this refinement style. Therefore 

interface based refinement introduces a notion of observability not necessarily implied in the other styles. 

The observability can be exploited in the event that a designer does not wish to have subsequent models be 

viewed differently (e.g. keep the same interface) while at the same time this observability can be an issue 

when design differences are desirable but difficult to push to the interfaces.

Interface based refinement methodologies are illustrated in the Reactive Modeling Language (RML) 

[Raj99] and SPADE (System level Performance Analysis and Design space Exploration) [PauOlaj. In RML 

a concept called hierarchical verification is employed. RML uses an object called a reactive model. These 

reactive models can be composed to form composite objects. Hierarchical verification requires that every 

finite sequence of observations resulting from the detailed module also be possible from the abstract model. 

This work is directly relevant to the proposed methods in this chapter and will be discussed in more de­

tail. SPADE on the other hand uses Kahn Process Networks to describe functional models and a library 

of architectural building blocks. The functional model creates traces. These traces can be “accepted” by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

96

the architecture and contain information detailing which operation the architecture should perform. Trace 

transformation is the process by which functionality is assigned to available architecture resources. This 

transformation equates to forcing refinement traces to change to meet available architecture resources and 

topologies. This style of work has also been used in Sesame [And06] which builds on the SPADE frame­

work. Refinement for these tools is a means to achieve a mapping. While mainly methodological in nature 

the difference between this approach and a tool like M e t r o p o l is  is that SPADE starts with a functional 

description and works top down. METROPOLIS works both bottom up and top down, refining both architec­

tural services and functional descriptions independently.

Two other interface approaches are SynCo [Olg03b] and Signal [Jea03], SynCo is based upon 

the work of [Olg03a] which is a compositional component based methodology. Transitions systems for 

both refined and abstraction systems are specified. States in those systems are then “glued” indicating which 

states are required to correspond to each other (this is a many to one mapping from refined to abstract model). 

Also synchronization mechanisms can be defined as well in order to create larger systems from individual 

LTS. SynCo will be used in this thesis. Signal on the other hand is a polychronous (i.e. multiclocked) 

design language. This language has the notion of flow equivalence between behaviors. This means that for 

two behaviors their signals hold the same values for the same order. This leads to flow invariance where an 

asynchronous implementation preserves flow equivalence.

Other approaches exist which can not be placed into one of the three previous classifications. 

These often consist of ad hoc or brute strength style approaches. For example in [Nen96] the authors demon­

strate that object oriented (OO) subtype hierarchy type checking can be used to identify refinement. They 

investigate how concepts in OO programming languages can be used in C2, a component and message based 

system specification style. They find that by making subtyping explicit, identifying component substitution 

is possible. Also extending type checking mechanisms allows a richer set of architectural relationships to 

be expressed.

The proposed design flows in this thesis are a combination of event and interface based ap­

proaches. Specifically they most closely resemble the work of [Raj99] and [Olg03a] (both interface based). 

For example they incorporate concepts such as trace containment, labeled transition systems or control 

flow automata, and trace transformations. In fact the tools Mocha and SynCo are used in Chapter 5 on 

several cases studies to actually implement the methodologies presented. This thesis could be extended 

to style/pattern based approaches as well assuming a set of rules were created. Aspects of this process 

were performed in early M e t r o p o l is  related projects using both TTL and Yapi channels as proposed by 

[PauOlb].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

97

4.3 Event Based Service Refinement

Event based service refinement will be presented first. The presentation ordering was selected 

because of the approaches presented here, event based is the most general. Events can be leveraged to 

perform both interface and compositional component based verification as well (to be discussed). Event 

oriented frameworks have become popular with the increased interest in exploring design frameworks which 

allow specifying concurrent computation models. Lee and Sangiovanni in [Edw98] introduced the tagged 

signal model which demonstrated how an event based framework can be used to express a variety of models 

of computation. This characteristic has made them very flexible and gives them the ability to realize a wide 

variety of systems. Also event based models are portable because often they only assume the presence of 

events and do not make other assumptions about the framework which is implementing the events. Event 

based platform refinement is prefaced upon the following ideas:

•  The design framework uses events to denote system activity and provide synchronization mechanisms. 

For example, imagine a basic producer and consumer example. The producer writes to a shared 

storage location. Upon doing so, it produces an event (production) signaling this. It then waits for 

the presence of another event (consumption). The consumer will use this notification (production) to 

realize that it it can now consume the data. Upon consumption it will signal this operation with an 

event (consumption) as well. This notifies the producer that it can safely produce again. This process 

continues indefinitely.

•  Sequences of events (traces) can be captured to recreate or represent system behavior. For example 

a bus transaction has a fixed sequence of events as dictated by the protocol. A request event must 

proceed a grant event for example. If this sequence is not maintained then the system behavior has 

been violated.

•  Event sequences can restrict or enforce behavior. For example often times a system has to make 

choices. A control statement (if, while, for, etc) often has conditions which allow the system to make 

a decision. Those conditions can use events as part of their evaluation. Allowing or restricting event 

appearance can be an effective mechanism to enforce behavior without changing the model explicitly.

•  This enforcement or restriction has the ability to be a well defined, methodological refinement as will 

be shown in this thesis. Specifically examples will be shown in the METROPOLIS design environment 

in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

98

4.3.1 Proposed Methodology

In order to systematically refine a platform there must be a methodology in place which demon­

strates the procedure for a designer to follow in order to perform various refinements. In following such 

a procedure, ideally one can enforce by construction which properties will hold between the abstract and 

refined model. In the event that the construction can not be provably correct, such a method will allow 

a property checking system to perform verification. One can therefore follow various procedures depend­

ing on which properties are of interest. Each section regarding a refinement style will begin with such a 

proposed methodology.

Within this section there are three refinement methodology proposals for event based service re­

finement. These three proposals will examine how event based platform refinement can be performed for 

two scenarios/goals:

1. Refinements between and within systems with changing com ponent-to-com ponent relationships. 

For example an architecture designer may wish to introduce a new bus, memory hierarchy, or process­

ing component. These introductions will manifest themselves as new components. Alternately, one 

may wish to collapse services into a single component. This will result in the removal of components 

and existing components will therefore offer more services.

2. Refinements between systems with changing com ponent-to-scheduler/annotator relationships. For

exam ple, it  m ay  b ecom e necessary  to  in troduce  com ponen ts w hich  ac t as arb itra to rs o r contro llers 

w hich do  n o t o ffe r serv ices d irec tly  to  functional m odel com ponents bu t ra th e r on ly  re s tric t th e  oper­

ation o f  ex is ting  com ponents.

T he  in itial refinem ent m ethodo log ies to  b e  described  are w hat this thesis term s vertical o r horizon­

tal refinem ent. T h ese  are  bo th  topolog ical refinem ent techn iques (the topo logy  o f  th e  system  is affected). 

V ertical refinem ent refers to  th e  p rocess o f  transfo rm ing  re la tionsh ips betw een com ponents (scenario 1). 

F o r exam ple in  METROPOLIS th is occurs in  the schedu led  netlist. T h is typ ically  is done by  targeting  one 

particu lar p rocess o r m ed ia  e lem en t and  decom posing  it  in to  m ultip le  m ed ia  and  p rocess e lem en ts and  then  

rep lac ing  th a t decom posed  structure  b ack  in to  th e  m odel. T h is  is geared  tow ard chang ing  the natu re  o f  the 

serv ices and  th e  in terac tion  betw een  those  serv ices th e  arch itec tu re  provides.

Horizontal refinement refers to refinement which converts aspects of the model’s scheduling mech­

anisms into components themselves in the scheduled mechanism (scenario 2). In M etro po lis  this requires 

that quantity managers from the METROPOLIS scheduling netlist move into the scheduled netlist. This rep­

resents refinements geared toward physical implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

99

Figure 4.3 illustrates a high level view of the various event based refinement styles to be discussed. 

This picture demonstrates that it is important to clearly separate the components in the model which provide 

services from the components which schedule these services. The number, type, origin, and order of events 

are the aspects which are modified by the refinement styles.

z \

lifed

EloM fU tl 

E2otd (r*)

En«w |3*)

New events but 
order fixed

Adding and 
removing 
scheduled 
components. 
Requires more or 
less schedulers

Scheduled
Components

Vertical
Refinement

u

Scheduling
Mechanisms

©
©

E1old (I- , 2"*, o rS 'n

E2oM (1 ,

E3oW (I- , t*, o r 3 ^

Horizontal'
N T ^ I

Old events but 
order changes

scheduled Horizontal 
Components Refinement

si

S2

' Scheduling 
functionality 
manifests as 
scheduled 
component

Scheduling
Mechanisms

Figure 4.3: Event Based Refinement Proposal

For the rest of these sections let a  be a set of components (objects which provide or use services). 

These are often processes in a M e t r o p o l is  scheduled netlist. y is a set of annotators or schedulers. For 

example quantity managers in a METROPOLIS scheduling netlist. Finally P is the overall behavior of the 

platform. P will mean something unique to each system. In this thesis P is a event trace.

Vertical Refinement

Vertical refinement is the notion that component-to-component relationship changes (scenario 1) 

are performed for three reasons.

• Increase service interaction sequentially. For example adding a cache hierarchy to a microprocessor 

model by physically stringing out a first and second level cache with main memory. This modification 

is often done to reduce the number of processing elements (PEs) needed since the services can map 

to the same element.

•  Increase service interaction concurrently. For example adding processing cores to a many-core 

architecture. This modification is done to provide performance gains over sequential execution. Also 

this can be done to expose parallelism for functional models to take advantage of during mapping.

• Create coarser or more granular services. While it could be said that these changes could be clas­

sified as one of the previous two reasons, this classification specifically occurs when the abstraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

100

level changes. For example, migrating from task level modeling to transaction level modeling.

Definition 4.3.1 Vertical Refinement - A manipulation to the scheduled component structure (netlist) to 

introduce or remove the number or origin o f events as seen by the scheduling components (netlist).

The term vertical comes from that fact that these changes are within the same domain (M e tro p o ­

l i s  scheduled netlist for example). It is not swapping aspects between netlists but rather moving within a 

particular netlist. Naturally this contrasts with horizontal refinement. Vertical refinement of an platform can 

be seen as a whole spectrum of refinement with the abstraction levels being defined as to what elements are 

passive (media for examples) and which are active (processes for example). One can change the number and 

types of processes in the scheduled netlist or one can change the number and type of media in the scheduled 

netlist. The primary method of vertical refinement is the addition of service media. This ultimately is the 

addition of architecture services at a different level of granularity compared to the abstract services provided 

initially. Other system design methodologies such as [Ing04] term this a design decision refinement since 

the behavior of the architecture will change.

Formally a vertical refinement is a transformation in the set of components (a) and annota­

tors/schedulers (y). Additionally behavior (P) may change:

( V 1) OCrefinement CCaZ?stract U  CCadditional

(V 2) OCabstract C  OCrefinement

( V 3 )  | Yrefinement |  ^  I  ) 'abstract \

(V 4 )  P refinement C  p abstract

Vi requires that the refined system have all the components of the more abstract system and allows 

for additional components if needed. V2 requires that the abstract components are a subset of the refined 

component set. V3 requires that the number of annotators/schedulers in the refinement is greater or equal 

to the number in the abstract model. Finally, as with all refinements, V4 requires that the behaviors of the 

refinement are a subset of the abstract model.

Figure 4.4 is an illustration of how vertical refinement is carried out in M e t r o po l is . An addi­

tional explanation of this vertical refinement is shown in Table 4.2. This example illustrates that the two 

subtypes of vertical refinement, sequential and concurrent, change the event traces. This change can be in 

the number/origin of events seen but not the overall ordering. In the left most column (labeled original), 

the sequence of events seen by the METROPOLIS scheduling netlist is shown. In a sequential, vertical re­

finement (second column) an RTOS is added. This introduces the new event RTOSRea d  but the order 

amongst the events also in the original sequence is unchanged. The “concurrent 1” trace (third column) 

adds a cache. This adds an interleaved C a cheR ea d  but the order in which the other original events are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

101

Mapping Mapping
Process Process

OS?
RTOS x-Sequential 

Addition

Scheduler x

CPU 
Scheduler

New
origins and (sm' 
number 
of events 
scheduled  
and
annotated Cache

cpuRead

cacheRead

Concurrent
Addition

Scheduled Netlist

Scheduler s

Bus 
Scheduler^

RAM' 
Scheduler.

Scheduling Netlist

Figure 4.4: Vertical Refinement Illustration in METROPOLIS

seen is still unchanged. The same number of events do not appear since a cache hit is assumed. The final 

column (concurrent II) is a cache miss which causes interleaving but does not eliminate the appearance of 

other events or change the organization amongst them. The events to notice are italicized throughout the 

table.

Original Sequential Concurrent 1 Concurrent H
El (CPURead) E l (RTOSRead) El (CPURead) E l (CPURead)
E2 (BusRead) E2 (CPURead) E2 (CacheRead) E2 (CacheRead)
E3 (MemRead) E3 (BusRead) E3 (BusRead)

E4 (MemRead) E4 (MemRead)

Table 4.2: Potential Vertical Refinement Event Traces

The vertical refinement methodology is explicitly shown in Algorithm 1.

Horizontal Refinement

Horizontal refinement is the transformation of scheduling (quantity managers in METROPOLIS 

for example) functionality into a scheduled component (a M etro po lis  process or media the scheduled 

netlist for example). This is the second scenario mentioned earlier. The spectrum of different horizontal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

102

Algorithm 1 Vertical Refinement Process 
1: Select service, S, to refine vertically {This decision is made based on DSE results and performance

desired}

2: if S = MCS1 or MCMI then

3: Add new component, Cn

4: for all Components, C, in S do

5: if C, interacts with Cn then

6: Add internal interfaces to C, to accommodate, Cn

7: end if

8: end for

9: else if S  =  SCSI then

10: Add new component, Cn

11: Add one internal interface to accommodate, Cn

12: Reclassify component as MCSI

13: else

14: Add new component, Cn

15: Add quantity manager, QM^ew {Cn is a new stand alone component}

16: Classify the component as SCSI

17: Register the service with the mapping process

18: end if

19: Reconnect the new topology

20: for all Events, E, between Netlistic/,^ and NetlistJC/,edu/,„g do

21: Capture new behavior, BNew

22: end for

23: RETURN BNew

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

103

refinements results from how many of the schedulers one moves and what portion/aspects of the schedulers 

are moved. Horizontal refinement is done in for two primary reasons:

•  In order to reduce the number of elements resolving quantities. This potentially represents a way 

to speed up simulation. This can be accomplished by removing the number of events that need to be 

evaluated by the simulation manager.

•  Focus the scheduling effort more locally which reflects a more implementation based view. This 

can be done in the event that the design environment can be targeted for synthesis.

Definition 4.3.2 Horizontal Refinement - A manipulation o f both the scheduled and scheduling compo­

nents (netlists) which changes the possible ordering o f events as seen by the scheduling components (netlist).

The term horizontal comes from the fact that the changes made are from different domains. Ob­

jects once concerned with controlling the scheduling of components now become actual components which 

enforce that schedule through their behavior as components. In M etropolis  this is a swapping of items 

from the scheduling to the scheduled netlist. [Ing04] terms this a Semantic Preserving Transformation 

refinement since it retains the overall behavior of the model.

Formally a horizontal refinement is a transformation in the set of components (a) and annota­

tors/schedulers (y). Additionally behavior (P) may change:

(Hi) (^refinement f  ®abstract

(H 2 ) (^abstract C  (^refinement

(H 3 ) | Yrefinement I I Yabstract I

(H 4 ) P refinement Pabstract

Hi requires that the number and types of components in the refined model and the abstract model 

not be equal. H2 requires that the abstract components be a subset of the refinement. This is also a require­

ment of vertical refinement. The number of annotators/schedulers must be greater in the abstract model as 

shown in H3 . H4 requires the behaviors of the refined model to be a subset of the abstract.

Figure 4.5 is an illustration of how horizontal refinement is carried out in METROPOLIS. This 

shows the migration of a bus scheduler which manifests itself as an arbiter component. The affect of this 

refinement on event traces is shown in Table 4.3. The left column shows the original trace (the event 

and which component generated it). The right column shows a possible trace of the refinement. Notice 

the second and third rows. Event E2 and E3 now are generated in a different order than in the original. 

This is a change which would not have been possible in solely vertical refinement. Horizontal refinement 

verification will require that the extent to which this re-ordering can occur be specified by the designer. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

104

Mapping
Process

C
' read

Mapping
Process
I

CPU 
Scheduler

Ordering 
of ev en t («» 
req u ests  
changed

RTOS 
Scheduler

CPU 
Scheduler

Control
Thread

cpuRead

Migrate

—4SM Scheduler /
Remove

Scheduled Netlist

RAM
Scheduler^. 

Scheduling Netlist

Figure 4.5: Horizontal Refinement Illustration in METROPOLIS

specification can be done typically by stating explicitly which sequences can not occur (a smaller set than 

allowed sequences). Typically boundary events are also specified denoting when this deviation can begin 

and when it should end.

Original * Refined (Interleaved)
El (BusRead) -> From CPU1 El (BusRead) -► From CPU1
E2 (BusRead) —> From CPLJ1 E3 (BusRead) —> From CPU2
E3 (BusRead) —> From CPU2 E2 (BusRead) —> From CPU1
E4 (BusRead) —> From CPU2 E4 (BusRead) -> From CPU2

Table 4.3: Potential Horizontal Refinement Event Traces

The horizontal refinement methodology is explicitly shown in Algorithm 2.

Diagonal (Hybrid) Refinement

Diagonal refinement is a combination of vertical and horizontal refinement methods. The goal of 

any of these refinement methods is to determine a set o f properties that are held or not held depending on 

the refinement style. Ultimately these properties will determine which refinement methodology is employed. 

One potential drawback of a diagonal refinement approach is that as more changes are made in parallel to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

105

Algorithm 2 Horizontal Refinement Process
1 Select service, S, to refine horizontally {This decision is made to affect scheduling of services)

2 QMo/d —> creation of new component, Cn which is SCSI

3 if 5 =  MCSI or MCMI then

4 for all Components, C, in S do

5 if Q  is required to interact with Cn then

6 Add one external interface to C, to accommodate, Cn

7 end if

8 end for

9 else if S  =  SCSI then

10 Add one external interface to C to accommodate, Cn

11 end if

12 Remove QMoid {5 no longer requires a quantity manager)

13 Add quantity manager, QMNew {This is for Cn }

14 if 5 =  NULL then

15 Add quantity manager, QMNew {This is a new stand alone component)

16 Classify the component Cn as SCSI

17 Register the service with the mapping process

18 end if

19 Reconnect the new topology

20 for all Events, E, between NetlistJC/,e(/ and Netlisticftei;u;ing do

21 Capture new behavior, Bncw

22 end for

23 RETURN Bncw

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

106

a design, the more difficult (or impossible) it may become to determine the effects of the changes. The 

methodological recommendation is that for any one refinement, each stage only consist of a vertical or 

horizontal change followed by a verification of the relevant aspects before making any additional changes.

Event Based Properties

In order to make use of event based refinement methods, it is important to illustrate that properties 

can be defined over events. These events will be of use in describing architectural services. The ability to 

specify properties (event sequences) and verify these sequences is a key part of refinement. In Table 4.4 a 

simple set of event traces demonstrates how to represent resource utilization. The table is first broken into 

two sections. The left shows a “bad” resolve() function. The function resolve() is used in METROPOLIS 

during the scheduling phase which enables events. The other side shows a “good” resolve(). In this case a 

“good” resolve makes maximum use of the resources by scheduling events in such a way that resources are 

not idle. For example assuming events E l, E2, and E3 only use the CPU whereas event E4 uses the CPU, 

Bus, and Memory, it is ideal to let the Bus and Memory process the event E4 as soon as possible assuming 

that the events are independent. In the “bad” resolve() scenario the events are scheduled E l, E2, E3, E4. The 

P’s represent phases at which the elements are idle. The italicized Ps in the “bad” resolve() illustrate phases 

in which resources are available but are not used. The difference can be seen in the “good” resolve which 

schedules E4 first on the CPU thereby enabling this event to be seen earlier in the other components. This 

property can be expressed later in such a way that allows the scheduling of events using the most resources 

first in the event that events are independent.

Bad Resolve() Good Resolve ()
CPU E1,E2,E3,E4 E4, E l , E2, E3
Bus P4, Pi, Pi, Pu  E4 P i,E 4
Mem P5, P4, Pi, Pi, Pu  E4 P2,P ,,E 4

Table 4.4: Resource Utilization Event Analysis

In Table 4.5 the latency of two different simulations are shown. Again one side illustrates a “bad” 

resolve() and the other side a “better” resolve(). Each resolve() side has two columns. The leftmost of 

these columns shows the events to be scheduled. The rightmost of these columns shows the event selected. 

In this case, “better” means that the average latency of events (time from generation to annotation of a 

particular event) is minimized. Each element is labeled with a number in parenthesis which illustrates 

which scheduling phase number is currently being evaluated. The italicized events illustrate key decision 

points in the table. Starting with the “bad” resolve() side a description of the table is thus: initially the CPU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

107

can choose between event E l and E2. E l is selected. In the next phase E3 enters the system so that E3 and 

the left over E2 can be selected. E2 is selected. The bus now can select El (what the CPU just passed on) 

or from an existing EX. EX is selected. In phase 2 the CPU can only chose E3. The bus now can select 

between the older E l or E2. As shown by the italics, E2 is chosen. Then in the last stage, again E l is passed 

over for E3. In this case E l waits two phases longer than necessary. In the “good” resolve() trace this is not 

the case. It initially proceeds in the same way, but in phase 2 E l is scheduled instead of E2 and in the final 

phase E2 selected ahead of E3. This scheduling would minimize the latency for each event.

Bad ResolveQ Good Resolve ()
Choices Selected Choices Selected

CPU (0) E l, E2 El E l, E2 El
CPU (1) E2,E3 E2 E2, E3 E2
Bus (1) E l, EX EX E l, EX EX
CPU (2) E3 E3 E3 E3
Bus (2) E l, £2 E2 E l, E2 El
CPU (3) 
Bus (3) E l, £3 E3 E2,E3 E2

Table 4.5: Latency Event Analysis

The key issue for event based refinement is resolving what are the properties that are required to 

hold between the abstract and the refined model. The first question is how do those properties manifest 

themselves as attributes of a model? For example if one is interested in the resulting latency of a process, 

what are the observable behaviors of the process which give them insight into this property? The second 

question is how do I capture and specify the properties? The third question is how are those attributes to be 

related between the two models? To begin to answer these three questions I introduce two definitions of a 

property.

Definition 4.3.3 MicroProperty - The combination o f one or more attributes (quantities) and an event 

relation defined with these attributes.

Definition 4.3.4 MacroProperty - A property which implies a set o f MicroProperties. Defined by the prop­

erty which ensures the other properties’ adherence (dominator property). The satisfaction (i.e. the property 

holds or is true) o f the MacroProperty ensures all MicroProperties covered by this MacroProperty are also 

satisfied. Since the the implication does not commute there are MacroProperties which share MicroProp­

erties but they are not themselves the same. MacroProperties are also assigned a level (1 to °°). The level

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

108

indicates the length o f the longest chain o f implications the MacroProperty is responsible for. MicroProper­

ties are by definition level 0.

Event Based Property Classification

This section will begin to discuss which properties can be specified during event based refinement. 

Right now the list is very sparse and high level. The majority of effort will now go into identifying these 

properties, their relationships, and how to check them.

One can categorize the properties as structural, functional, and performance. Platform-Based 

design dictates that these be kept explicitly separate.

Examples of performance properties are:

•  Latency - time for a task to complete. Given an appearance (start) time and a disappearance (end) 

time of an event, the latency is the positive difference between the two.

•  Throughput - number of tasks completed per unit time. Given a period of time (t) and a number of 

completed tasks (T^), throughput is T^/t.

•  CPI - cycles per instruction (request). This is simply an average to indicate system performance. For 

example, the goal of a basic pipelined microprocessor is CPI=1. In the superscalar microprocessor 

era, typically the inverse, IPC, is a more relevant metric.

•  Jitter - random variation in a signal. For example given a periodic signal, the variation in the period 

or amplitude is an example of jitter.

Performance properties typically have to do with specifications regarding the desire for a certain 

level of performance. However sometimes these properties can actually be required for the correctness of a 

system. This is often true of safety critical or real time systems. In many cases performance properties are 

related to one another.

Examples of functional properties are:

•  Mutex - mutual exclusion of a resource. This property can be realized by semaphores or shared 

memory/variables. In many model languages such as SystemC events are used to accomplish this.

•  Data Consistency/Coherence - global data set contents must match and reading and writing ordering 

must be preserved. This property commonly is of interest in memory systems. Cache consistency and 

coherency are often maintained by such protocols like MESI (Modified, Exclusive, Shared, Invalid).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

109

Functional properties typically have to do with maintaining the correctness of a system. Often 

they implicitly affect the performance properties of a system as well.

Examples of structural properties are:

•  Memory Size - size of memory elements such as FIFOs. There exists both the physical memory as 

well as the virtual memory. These can be distributed or shared memories.

•  ALU operand size - the size of the ALU operands (i.e. bits). In addition to operand size, operation 

type can also be important (floating point vs. integer).

•  Datapath width - the size of the instruction and addressing datapaths. Datapath width may need to 

change in the presence of instruction level parallelism such as VLIW machines or the adoption of a 

new ISA.

Structural properties typically have to do with both the performance and the correctness of a 

system. They will interact with other structural properties as well as with functional and performance 

properties.

What will be of key importance is the way in which properties are related and categorized so that

one can:

•  Determine which properties are related and how. This can be defined over sets of Micro and Macro 

properties.

• Determine which refinements relate to which properties. These can be defined both explicitly (i.e. a 

list of required properties), construction (i.e. certain refinements automatically preserve properties), 

or implicitly (i.e. one property preservation requires the adherence of another).

In terms of grouping properties an initial attempt I have seen is in [Rat98] which describes a 

method which uses the following terminology:

•  Rule of Computation (CMP) - dictates how variable (stored) values are computed based on their old 

values as well other variables.

•  Rule of Read Order (RO) - for any pair of read events x  and y  in a process, if x  comes before y in 

program order, then x  occurs before y.

•  Rule of Write Order (WO) - for any pair of write events a and b in a process, if a comes before b in 

program order, then a occurs before b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

110

•  Rule of Write Atomicity (WA) - writes become instantly visible to all processes instantaneously.

One can group properties by this method. For example the “mutex” functional property is a WA 

property. While Data consistency is a RO and WO property. This method can be used to examine Macro 

and Micro properties relationships.

Event Based Property Relationships

This section will describe how property relationships can be established. This is a key to the Micro 

and Macro properties discussed earlier. These relationships will be needed to check event based refinement 

in an efficient manner both in terms of its specification as well is its execution time. Here are several 

examples indicating the relationship and hierarchy of Micro and Macro properties. Future work outside of 

this thesis will be devoted to establishing these relationships more formally.

1. Data Consistency —> Sufficient Space, Read Access, Write Access

In the case of this relationship, if the MacroProperty “Data Consistency” (DC) is proven, it then 

implies the MicroProperties “Sufficient Space” (SS), “Read Access” (RA), and “Write Access” (WA). 

SS indicates that the data storage device itself has enough space. RA indicates that the storage device 

is allowing reads. WA indicates that the storage device is allowing writes. Notice that proving the 

MicroProperties SS, RA, or WA does not imply anything else at this point. However, assume that WA 

and RA were transformed into a MacroProperties such that:

•  Write Access —> SS

•  Read Access —> Data Valid

In this case, SS is the same MicroProperty as described previously and “Data Valid” (DV) indicates 

that the data is marked as being valid in the storage device (i.e. during a cache or snooping update). 

If these MacroProperties are proposed and proven, then “Data Consistency” actually implies DV as 

well in addition to the other MicroProperties mentioned previously. It also will imply SS transitively 

through MacroProperty hierarchies and would not have to imply it explicitly. “Data Consistency” is 

a RO and WO property in terms of its grouping as well as a performance property in terms of its 

classification.

2. Data Coherency —> Data Valid, Snoop Complete

Notice that “Data Coherency” (DCo) implies DV. RA implies this MicroProperty as well and RA is 

implied by DC. However simply because DCo and RA share a MicroProperty they do not imply each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Il l

other. Implication is a one way assignment. “Snoop Complete” (SC) indicates that the snoop process 

by the memory controller is complete as part of the coherency protocol. DCo is a WA property by its 

grouping and performance property by its classification.

3. Data Precision —> Sufficient Bits, SS

“Data Precision” (DP) implies that there are “Sufficient Bits” (SB) to hold the results. SB in turn 

implies that “No Overflow” (NO) is detected, and therefore the data is valid as well (property DV). 

Also required of DP is that there is sufficient space (property SS). DP is an example of a CMP group 

property and yet again it is a performance based property like the other properties discussed.

•  Sufficient Bits —► No Overflow

•  No Overflow —* Data Valid

The keys to these property relationships are: (1) There must be a method to prove the relationship, 

(2) the MacroProperties cannot be more expensive to check then the sum of their implied MicroProperty 

checking costs, and (3) the MicroProperties must be non-trivial. The relationships between the properties 

outlined are illustrated in Figure 4.6. Arrows from left to right indicate implications. The “leaves” (proper­

ties with no outgoing arrows) are MicroProperties while the others can be considered MacroProperties. This 

illustrates that properties can be classified as to which “level” they belong to. All MicroProperties are level 0 

while MacroProperties are a level >  1. Larger numbers imply more property implications and indicate how 

far each property is from the true MicroProperties. One possible heuristic selection as to which properties 

are proven first could be a “greedy” selection by level as to cover as many properties as possible. Another 

view is similar to logic minimization where MicroProperties are seen as minterms and MacroProperties as 

cubes.

Data Precision (DP) Precision (DP) r
Level 3 No Overflow (NO)

Data Consistency (DC) 2
Level 2

^  Read A ccess (RA)

^  Sufficient Bits (SB) 
2

^  Write A ccess (WA)' Sufficient Space (SS)
0

1
Data Valid (DV) 

0
Data Coherency (DCo)

Level 1 ^  Snoop Complete (SC) 
0

Figure 4.6: Macro and MicroProperty Relationships

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

112

Event Petri Net

Many systems (METROPOLIS and M e t r o  II for example) progress through simulation in a series 

of phases. In each phase, simulation proceeds by enabling or disabling events. This enabling and disabling 

determines which active components (threads) will be allowed to make progress in the next phase. This 

scheduling behavior (which decisions can be made) can be captured formally. Capturing the behavior for­

mally allows one to reason about the system and enforce system operation. These same structures will also 

be used to define Macro and MicroProperties relationships. Once both structures exist (one for the service 

behavior and one for the property relationships) they can be augmented together to either enforce or check 

adherence of the service to the property. A structure capturing this execution is presented here as an event 

petri net. Formally an event petri net is:

Definition 4.3.5 Event Petri Net (EPN) - is a tuple <P, % A, to, *o > where:

- P is a finite set o f places,

- T is a finite set o f transitions,

-A  is a set o f arcs, A C  (P x T) U (T x P)

-<0 is a weight function, CO: A —> N

- xo is a an initial marking vector, xq e

The event petri net is defined as any normal petri net. The event petri net developed for the model 

(Models™) requires that each service event of interest has a corresponding transition, ten- The firing of that 

transition denotes the occurrence (enabling) of that event. The event petri net developed for the properties 

(Props™) requires that each property have a place, p<prop> ■ The property is satisfied when a token is present 

in its corresponding place. Props™ also is constructed in such a way that it is required that all transitions 

only fire once. Props™ begins with an empty initial marking vector. It is connected to the the Models™ in 

such a way that when specific ten fire, they will produce the needed tokens eventually in Props™’s P<Prop> 

places.

For example, in Figure 4.7 the top half illustrates a sample Models™. This model is for a basic 

CPU, Bus, and Memory system. The leftmost section corresponds to the CPU, the center to the Bus, and 

the rightmost to the Memory. The transitions are labeled with a name describing the function call which 

will cause the transition to fire (the initial transitions in this case) or as ten for the transitions indicating 

the enabling of specific events. Models™ basically illustrates a producer/consumer structure. The CPU 

“execute” transitions are contained within the CPU petri net itself. However the other functions in the CPU 

interact with the Bus and Memory petri nets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

113

The lower half of Figure 4.7 is the Ptopepn- The transitions are labeled numerically (for simple 

identification) and the places are labeled with the acronym used previously for each Micro and MacroProp- 

erty. Prop£/w is augmented with a set of transitions, tc/v, and a set of places, Pcn- Each transition tew 

produces the exact number of tokens needed such that each of the numeric transitions in Propgpw fires ex­

actly once. There are three property places, poco, Pdp-, and poc (from left to right at the bottom of the 

figure). Places “startl”, “start2”, “start3” receive the tokens from tci, tc2, tc3 respectively.

The arcs into tew from pew are defined by the requirement of each property. In this case, they are 

defined by which enabling of events should constitute the satisfaction of a property. In Figure 4.7, tci which 

will generate property DCo is attached to the places related to the write transitions (pci, Pc2 , pcs)- tc2 (DP) 

is only related to the “execute” function, t£3 through pc4 - The third and final property DC, is associated with 

to .  This transition requires bus read and memory read events t£3 and tgs and places pcs and pc6- These 

scenarios are a simplified set of events to indicate the properties but should give the reader some indication 

of how this process occurs.

Event based refinement has introduced both vertical and horizontal refinement methodologies 

as well as an infrastructure to support those methodologies (Macro and MicoProperties and Event Petri 

Nets). Together these pieces will be used to reason about refinement. The next section will propose another 

methodology which will focus less on changing the structural interaction between scheduled services and 

their scheduling mechanisms and more on inter-component structural changes within the scheduled services 

themselves.

4.4 Interface Based Service Refinement

Interface based refinement denotes a method of verifying relationships between systems based 

on how they interact with other systems or the environment in which they are placed. These interactions 

occur at interfaces. This definition clearly defines which aspects of the system are required to be related. 

Interfaces become the only point at which system behavior is visible. Interfaces themselves in practice may 

be function calls, ports, visible variables, or any number of language dependent constructs. What makes this 

approach attractive is that it reduces the space of all possible behaviors to a fixed set and often requires no 

modification to the existing model. A drawback is that the designer often has to specify very clearly what 

the interfaces are and which interfaces require correspondence between two models. This section will detail 

how this work can be done at a high level followed by an explicit methodology in the METROPOLIS design 

environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

114

Model EPN

BusWrite

MemWrite

tE3
tE1 tE4tE2 tE3

tE5

pC6

pC1 |  

tC1 

3̂
1  ra|

pC5
tC3

start2 start3

t12
SBstartl tIOt13

NO SS
IWA

tl1

DVSC

t14

Prop EPN

pDPpDCo pDC

Figure 4.7: Event Petri Net Example

4.4.1 Proposed Methodology

Thus far both vertical and horizontal refinement have been explained. Next surface refinement 

will be introduced. This term denotes system level refinement using interface based refinement. Figure 4.8 

illustrates a proposal for this in an environment similar to METROPOLIS. This approach is called “surface” 

since interfaces can be viewed as the surface of potentially black-box components. All that can be assumed 

about the component is the number, name, and types of interfaces. The behaviors of interest therefore are 

the sequences in which these interfaces operate. This behavior may be the sequence of function calls made 

on or to these ports (as is the case in METROPOLIS), events generated on these ports, or even restrictions 

on what other components are attached to these ports. Interfaces which require services will be considered 

active interfaces whereas provided services are passive. What is of chief concern is how to capture interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

115

activity.

Surface Refinement

Q n r f a ro  Required Services I Example: surrace I n t e r f a c e  C aInterface Calls 
on Ports

|  Provides Services

SurfaceComponent

Component

Unknown MoC 
(DataFlow, KPN, Etc) .Observable. 

1 ^ 1eaejjns 
Internal Operation Interfaces 

Not Visible (Ports)
Restriction on the location 

and information available to 
define component behavior.

Figure 4.8: Interface Based Refinement Proposal

Syntactic Conditions

In order to automate the task of interface refinement verification, interfaces must be easily iden­

tified. Additionally, two models being compared need to have interfaces which are easily and correctly 

identified as corresponding. This process can be facilitated by syntactic conditions in the modeling envi­

ronment. These can include keywords, hierarchy, type checking, etc. While not a requirement explicitly of 

the modeling framework, there must be some way of indicating which interfaces are to play a role in the 

behavior of the system or component.

An example of syntactic conditions are given in [Raj03]. This frames the refinement conditions 

in terms of the reactive modules [Raj99] syntax and puts requirements on their variable structures for each 

model to be compared. These are the same types of syntactic conditions which will be used in this thesis. 

The similar syntactic conditions for M e t r o p o l is  models are, given X  -<Ref  Y, that Yinputs C Xmputs and 

Youtputs Q ^outputs■ Essentially this simply requires that X  have all of F s  inputs and outputs (if not more). 

This requirement could be viewed as simply a naming issue if one requires the same order and number of 

corresponding inputs and outputs for each model. In the methodology to be presented this requirement is 

the case (maintaining a strict order and naming style).

Trace Definition

As mentioned previously in the background and definitions, Section 4.1.2, a trace a is considered 

a sequenced set of observable values for a finite execution of the module. In the case of METROPOLIS, the 

key observable values that we are concerned with are function calls to media. This thesis will refer to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

116

trace consisting of function calls to media as a TraceM, where the “M” stands for “Metropolis”. Due to the 

semantics of METROPOLIS, processes must communicate strictly via media. This restriction could exist in 

METRO II as well but since media are not present in this environment, it would be component-to-component 

connections. Ultimately the behavior of a process/component can be characterized by the sequence by which 

it makes these calls. Syntactically this results in an interface call attached to a particular port.

Definition 4.4.1 METROPOLIS Interface Behavior - a sequenced set of observable values for a finite 

execution o f the model, TraceM. This sequence results from function calls on ports requesting (requiring) 

services.

In order to characterize the METROPOLIS TRACE, TraceM, the key structure needed to be obtained 

from the model is the control flow automata (CFA) concerning the ways in which these sets of observable 

events can occur. Once this structure is created State Equivalence concepts such as Bisimilarity and Simi­

larity [Raj03] can be used to determine refinement. A TraceM can be obtained by traversing this structure. 

This structure is described in Section 4.4.1. Before describing this structure however, one must select which 

set of interfaces should be considered for this structure. These sets are defined by what this thesis calls, 

refinement domains.

Refinement Domains

Naturally in a design there are many interfaces. However during refinement it may not be neces­

sary or appropriate to consider all of these interfaces during refinement verification. Often components are 

composed in such a way that there is a single set of interfaces which capture the behavior sufficiently of the 

set of the components. These collections of components are termed, refinement domains, specifically:

Definition 4.4.2 Refinement Domain - a collection o f components C, ports P, and observed ports OP. 

Typically organized by component service. <C,P, OP> where OP C P.

The refinement domain definition illustrates that only a subset of ports are involved in the inter­

faces to be verified. The components are typically organized into domains such as computation, communi­

cation, and storage. These organizations are constructed in such a way to minimize the number of observed 

ports needed.

Computation domains collect components involved in computation such as adders, multipliers, 

processing elements, etc. Interfaces typically have to do with the execution of specific services. An example 

of a refinement domain specifying interactions of interest in computation is when one changes from using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

117

an adder to multiply values to a dedicated multiplier. All that matters is the input and output interfaces, not 

the interfaces between the various adder or multiplier blocks.

Communication domains contain components such as buses, bridges, switch fabric, and buffers. 

Interfaces have to do with reading, writing, synchronization, or data movement. For example, two buses 

may be connected with a bridge. The interaction of interest is not between the buses and the bridge but 

rather that the end to end behavior is maintained. Hence bridge interfaces may be ignored.

Finally storage domains contain main memory, cache, or scratch pad storage. Interfaces have to 

do with loading and storing. Often with memory hierarchy one may add a new component (i.e. a cache). 

One is not interested in the cache’s relationship with main memory but rather with the boundary between 

the memory system and the components which need the data stored there. One can restrict refinement only 

to those interfaces.

An example of refinement domains is clearly illustrated in Figure 4.9. This is an example based on 

a FLEET style dataflow system. The left hand side shows the original system. This system consists of two 

computation refinement domains (Adder and Producer based) and one communication refinement domain 

(Switch Fabric based). One unique component is assigned to each of the three domains. One can see which 

function calls each component can make next to the component itself. These include, “move.source. Adder”, 

“prodLit()”, and “Add(inputl, input2)” for example. What is illustrated is a potential graph showing function 

interaction in each system. A graph is composed of locations and arcs. The locations are states of the system 

as it proceeds through its execution. The transitions occur as function calls are made in each refinement 

domain. In the original system, the adder has two states. The first state waits for data. When data arrives, it 

can perform the addition and transition to the next state. The adder can then move the result to the switch 

fabric. The switch fabric can move the data back into the adder through a series of move instructions. The 

producer on the other hand waits to produce a literal value. Once this occurs, it transitions to its second 

state. From this state the produced literal can be passed through the switch fabric to the adder or back into 

the producer and used as a seed to produce another literal.

On the right hand side of the figure, the second system is shown. In this case a memory component 

is added to the system. This is an newly introduced storage refinement domain. Also a new computation 

domain is defined combining both the adder and the producer. These additions can be seen as refinements. 

Restrictions have been made regarding the source and destination behavior as well. For example, the pro­

ducer can only be addressed through the adder now. The computation refinement domain now waits to 

“add” and then proceeds to the next state after the “Add(inputl, input2)” function execution. This system 

now will transition to a state in which a literal value based on the addition operation is produced through 

the “prodLit()” function. The switch fabric now can route data to the memory component, or to the states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

118

concerned with adding. Notice that after the “add” function, the switch fabric can be reached directly. This 

effectively bypasses the producer states if desired.

As is shown, only the function calls which interact between domains (through observable ports; 

not within a domain) are part of the interface and will be used for refinement verification. This is illustrated 

as arcs cross refinement domain boundaries. These arcs are colored differently from the inter-domain arcs. 

The point of this example and figure is to show how refinement domain definitions can change which func­

tion calls can be seen through observable ports (OP). The function calls which pass between domains are 

placed in the figure between the domains (as opposed to within the domain) for clarity.

Component
(Switch
Fabric)

move.sourceAdder Original 
move.desLAdder .
move.source.Prod ■ L t f c  I 
move.dest.Prod S y s t e m

Communication Ref Domain

m ove.dest

prodLitOAdd (inputl, input2)

Computation Ref Domain 1 Computation Ref Domain 2

t  t

Add (inputl, input2) prodLitO

~|move.source Adder 
move.destAdder 
move.source.Prod 
m ove.deslProd 

J  move.source.mem 
move.dest.mem

Second
FLEET
System

Communication Ref Domain

move.desLAdder m ove.dest Prod move.de stm em

m ove.destAdder
move.sourceAdder

move.30urce.mem

move.destmem

Add (inputl, input2) produt()

Computation Ref Domain 1
Storage Ref Domain 1

Component Component
i

Component Component
♦

Component
(Adder) (Producer)

1
(Adder) (Producer) (Memory)

Adder (inputl, input2) prodLitO get() put()

Figure 4.9: Refinement Domains in Interface Based Refinement

With refinement domains, interface traces, and the idea of syntactic conditions defined, a more 

detailed discussion of the actual surface refinement procedure can now be discussed.

Control Flow Automata in Metropolis

The key structure in this investigation is the Control Flow Automaton (CFA) representation of a 

M e t r o p o l is  model. M e t r o p o l is  has an Action Automata specification underlying it [Fel02a] but this 

automata provides much more information than is required here and its structure is not suited to use in this 

refinement scenario. A CFA is defined as a very much like in [Tho02]. It is a tuple <Q, qo, X, Op, —»>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

119

Q is a finite set of control locations. These locations will be determined by the METROPOLIS 

model structure, qo is the initial control location, X is a set of variables, and Op are operations which 

denote: (1) function calls to media (2) a basic block of instructions starting (3) a basic block of instructions 

ending. This “ending” and “beginning” symmetry is taken from the Action Automata semantics. A basic 

block is defined in the traditional sense, meaning a section of code in which there is no conditional execution 

which could result in a different execution sequence. A basic block simply could be viewed abstractly as a 

function call assuming no conditional execution occurs within the function. It is for this reason that the start 

and end are denoted. This way, the CFA could be augmented with the body of the function call if desired, 

inserted inside the beginning and end portions.

An edge (q, Op, q’) is a member of a finite set of edges and the transition relationship, — is 

defined as (Q x Op x Q). A edge makes a transition based on the evaluated Op present, q —*0p q’.

Ideally a CFA is created which represents the model and corresponding automata are created 

which represent the state of variables in the automata. These variable automata are used when decisions in 

the CFA depend on these variables. For example a model may have a loop which is checking the value of 

a particular variable. The CFA would have a variable, v e  X, which has its own automata which can be 

queried as to the value of that variable to determine what edges can be transitioned. For the purposes of this 

thesis, these automata are not formally defined nor are they automatically generated. Figure 4.11 shows one 

possible representation that could be used to capture the incrementing of an integer with a functional range 

of 0 to 2.

Figures 4.10 and 4.11 demonstrate a code snippet and the resulting METROPOLIS CFA respec­

tively as defined in this thesis. In Figure 4.11 there are two automata. The first automata is simply a 

hypothetical automata for the variable X. This automata is not actually created but it demonstrates what it 

would look like. This simply illustrates that X  will begin in a state representing its value of 0 and proceed 

until it equals 2. It is even further simplified by not illustrating all the states (control locations) and edges 

which would result from begin and end events. The main automata has 10 control locations. Next to each 

control location is a description which indicates the number of the control location, the type of node which 

lead to its creation as it would be defined by the METROPOLIS abstract syntax tree (AST), and/or a descrip­

tion of the node in the event that it is not explicitly defined in the AST. The edge labels are as described with 

“+” or indicating a start and end of a basic block.

Once a CFA is defined, a TraceM is nonempty word a\,..n over the alphabet of Q control locations 

such that a,- —* a,+i for all 1 <  i <  n.

Naturally the potential for a CFA to be quite large is a concern. As will be illustrated in the 

description of the M e t r o p o l is  backend (which generates CFAs) it is bounded by the nodes in the Abstract

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

120

Hypothetical Automaton for X variable

Control Location 1

A utom aton fo r I £ “ “ D“ ,’tod«

//sam ple code snippet 
p rocess exam ple { 

port Read portl; 
port Write port2; 

void thread(K 
int x = 0 

while (x<2){ 
po rtl. callRead();

x++;}
port2.callWrite();

>
}

Model

Control Location 2 
Group Node Type: LoopNode 
while loop

Control Location 3 
Group Node Type: 
ThisPortAccessNode

Portl .callRead()+
Control Location 4 
Group Node Type: None 
Ending o f basic  block

Portl .callRead()-
Control Location 5 
Group Node Type: Collection I 
o f Variable Nodes

x++(+)
Control Location 6 .
Group Node Type: Variable I  6  
Node (collection) -  End

X++C-)

X < 2 X>= 2

Initial Control Location 

X » 0

Control Location 7 
Group Node Type: 
ThisPortAccessNode

Port2.callWrite()+
Control Location 8 
Group Node Type: None 
Ending of basic  block

Port2.callWrite()-

.  Control Location 9 
9  ]  Group Node Type: None

Sink State

Control Location 10 
Group Node Type: None 
Bookend of LoopNode

Figure 4.10: 
Example

M e t r o p o l is  C ode
Figure 4.11: Resulting CFA for Code Example

Syntax Tree (AST) created by METROPOLIS compilation which could be very large. However this can be 

reduced further by heuristic grouping of nodes to create control locations as will be shown in the section to 

follow.

CFA M e tr o p o lis  Backend

The METROPOLIS design environment is designed around the concept of a meta-model as men­

tioned previously (Section 1.2). This allows for the initial model to be decomposed into an intermediate 

representation and then fed to a number of different tools called backends. This is demonstrated roughly in 

the structure shown in Chapter 1, Figure 1.10. As one can see, the model is parsed into an Abstract Syntax 

Tree (AST) and that AST is interpreted by the backends to generate another representation with semantics 

for another tool while maintaining some relationship to the original model. The creation of a backend to 

generate a CFA as described earlier (Section 4.4.1) was the primary tool flow of “surface” refinement as it 

currently functions in M e t r o p o l i s .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

121

The CFA backend traverses the AST and identifies the nodes of the AST. It is composed of two

files:

•  C F A B a c k e n d .jav a  - top level M e t r o p o l is  backend interface with file input/output functionality. 

This code interacts with the user and the M e t r o p o l is  infrastructure.

•  CFACODEGENVlSITOR.JAVA - AST visitor functions and CFA  construction mechanism. This code 

is the core of the tool and where 90% of its work is done.

C F A B a c k e n d . ja v a  is called when the backend is invoked and actually writes to various files 

the results of the AST node visitor functions. The file CFACODEGENVlSITOR.JAVA actually contains the 

visitor functions. The visitor functions traverse the AST and determine what should happen at each type of 

node. There are over 160 different node types that can make up an AST. It is in these functions that the CFA  

structure is determined. In particular this is true when visiting what this thesis introduces as Grouping Node 

Types (GNT). Each AST node generates its own location structure, L. Groups of these structures belong to 

a group location structure, {Li...L^}. Each group location structure each contains exactly one node which 

is a member of the GNTs. These sets of group location structures with one unique node of the GNTs are 

what constitute a control location, Q, in the C FA. All of this information is stored in an internal list structure 

which can be traversed itself. It is this heuristic grouping which prevents the size of the C FA  from being 

O(AN) (where AN is the number of AST nodes in the model) and rather O(GNT) (where GNT are the 

grouping node types in the model) which is substantially smaller in practice. In order to have this reduction, 

the GNTs are currently defined as:

•  Structure Nodes - these include ProcessDeclNode, CompileUnitNode. These nodes capture the struc­

ture of the process description.

•  Control Nodes - these include AwaitStatementNode, AwaitGuardNode, LoopNode. These represent 

control decisions which frequently result in branches in the CFA.

•  Variable Nodes - these include ThisPortAccessNode. These nodes will be very important as these 

are the source of the interface function calls which ultimately define the behavior of a METROPOLIS 

system.

Also worthy of note is that the CFA internal structure can be created in one pass through the 

M e t r o p o l i s  model code. Therefore the running time it is O(NV) (where NV is the number the nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

122

traversed by AST visitor functions) where \visit or functions] < AST nodes types in code. There are restric­

tions currently on the types of METROPOLIS systems that can be handled by this backend. For example all 

processes much be single threaded with deterministic behavior.

CFA Visual Representation

The first and most trivial result of the CFA backend is a simple visual representation as shown in 

Figure 4.12.

Group: 3 
Parents: 2 
Types: 12 
Inputs: ini
Outputs: #can be blank 
Misc: #can be blank 
Names: LoopNode 
Cond Codes: 1

I I
V V

Figure 4.12: CFA Visual Representation

The visual representation is simply for debugging purposes and allows the user to see not only 

what the structure of the CFA is but also examine what individual AST nodes compose a control location. 

This information can be used to redefine any heuristics used to define what a GNT is and then observe the 

effects of the different heuristic choices for grouping. The Group field is an integer identification of what 

group this object is. In turn this corresponds to a control location, Q in the CFA. The Parents field is a 

collection of integers which define which groups are the parents of this group. Types is a set of integers 

which are associated with each node to identify its composition of individual AST nodes (as defined by the 

AST node types). Each AST node type has a unique integer “Type” value which makes up this list. The 

Inputs field denotes what input variables must be required to transition from this group. The Outputs field 

denotes which output variables will be present (i.e. go “high”) when you transition from this node. Misc is 

used to hold such information as the occurrence of arithmetic nodes being visited (i.e. a PlusNode denoting 

a possible incrementing of a variable) or other information used to build the CFA. Names is simply a list 

of strings which indicate what types of nodes make up this group location (corresponding to the type field; 

easier for human debugging). And finally the Cond Code field indicates which type of conditional node was 

visited for the group (i.e. LoopNodes, AwaitStatementNodes, etc) and is internally defined to identify the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

123

branching structure of the CFA. The “arrow” like symbols are used where there are multiple children. This 

can be produced in one pass of the internal list structure of the CFA or O(Q) (where Q is the set CFA control 

locations).

Finite State Machine Representation

The second more functional result of the CFA backend, is that it produces a Finite State Machine 

(FSM) representation of the CFA. The inputs to the finite state machine represent information provided by 

other automata to the CFA model (such as the variable automata) and the outputs are the function calls to 

media. This is formatted as a KISS representation. An example of KISS is shown in Figure 4.13.

#KISS File
.i 3 #input count
.o 4 #output count
.s 2 #state count
.p 2 #next state equations
#inputs current_state next_state outputs
010 si s2 0101
000 s2 si 1010
. e

Figure 4.13: CFA FSM Representation

This format was chosen for two reasons: (1) It is easily produced from the internal list structure 

which also created the visual representation (2) it can be read by various tools such as SIS [E1192]. SIS in 

turn can produce other formats such as BLIF, PLA, EQN, etc. Of particular interest is BLIF (Berkeley Logic 

Interchange Format) whose close relative EXLIF can be read by FORTE [Nir03] as will be described in in a 

later section. Once the initial data structure is created by the backend, the algorithm to create a KISS file is 

as shown in Algorithm 3.

The running time of this algorithm is 0(2*(GL*IV  + GL*OV)). GL stands for Group Locations 

which are the CFA Structure Groups. IV and OV are input and output variable list sizes respectively. This 

computation is captured by the “for all” loop behaviors in Algorithm 3. Essentially one has to traverse the 

structure once to create the lists of inputs and outputs. Then you must traverse it again to actually generate 

the KISS file based on that information. Each line of KISS requires that you examine the input and output 

lists completely to see if they contain input or output at that location as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

124

Algorithm 3 K3SS Construction from CFA 
l: Input: CFA Data Structure, D

2: Output: KISS File, K

{Create unique list of inputs (step 1)}

3: for all Group Locations, i G D do

4: for all Input Values j  e  i do

5: if j  £  Unique Input List, UIL then

6: Add j

7: end if

8: end for

9: end for

{Same procedure as step 1: Add Output Values —> Unique Output List (UOL) (step 2)}

10: { ...}

{Create the declarations section (step 3)}

11: printf(“.i %d”, sizeof(UIL))

12: printf(“.o %d”, sizeof(UOL))

13: printf(“.s %d”, sizeof(D))

14: printf(“.p %d”, nstate.count) {nstate_count =  lines processed making the body (back annotated)} 

{Create the body (step 4)}

{Input portion of KISS}

15: for all i GD  do

16: for all elements, e € UIL do

17: if e € i then

18: printf(“l ”)

19: else

20: printf(“0”)

21: end if

22 : end for

23: end for

{Print information to describe the transition (step 5)}

24: sprintf(current_group, child.group)

{Same procedure as step 4: Output portion of KISS using UOL (step 6)}

25: {...}

26: Return K\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

125

Reactive Module Representation

The third and final result of the CFA backend is a reactive module [Raj99] file. This is a modeling 

language for describing the behavior of hardware and software systems. This file is produced as an additional 

benefit of the backend for three reasons: (1) It is very inexpensive to create a reactive module which models 

an FSM. (2) It allows for non-deterministic behavior which is not allowed by KISS models provided to 

SIS. (3) It can be read by tools such as MOCHA [Raj98], MOCHA allows a rich set of model checking 

algorithms to be run on the CFA model that are useful both for refinement and other verification tasks.

The first point mentioned for making this representation was that it was inexpensive to do from 

the FSM representation. Algorithms 4 and 5 give the algorithm to do so.

The process of creating a reactive module file can be done in one pass of the KISS file. The 

variable declaration initializations for the module are simply from the KISS input (.i), output (.o), and state 

(.s) declarations. The init command is simply another listing of the variables. The largest part of the file, the 

update commands, correspond one-to-one with each line in the KISS body. The running time of this process 

is naturally O(L) (where L is the number of KISS Lines).

The second reason for using this representation, non-determinism, is inherent in the fact that 

multiple guards in a METROPOLIS await statement may be true. Also inherent is that the union of all guard 

commands does not have to equal the entire space of the inputs (i.e. a reactive module can be partially 

specified). Naturally, KISS currently has deterministic behavior so it will result in a reactive module with 

deterministic behavior. However, there is nothing preventing a reactive module from being produced from a 

KISS file which would not run in SIS. A CFA could be produced that has non-deterministic behavior simply 

with a modification to the backend.

The third and final reason, the verification tool MOCHA, will be discussed in its own section to

follow.

FORTE Accommodations

Prior to the integration of Reactive Modules into the CFA Backend, this thesis was targeting a tool 

called FORTE. FORTE [Nir03] is a tool provided by Intel Corporation which is a collection of several tools. 

These are Functional Language (FL), Symbolic Trajectory Evaluation (STE), FSM Logic Data Model, and 

some circuit drawing tools. FORTE works on circuit descriptions of models. This is was a major factor in 

influencing the decision to reduce the CFA into a FSM representation originally.

Once a model has been created as a KISS file, that KISS file is given to the SIS tool. SIS is used 

to create a BLIF file with the SIS script shown in Figure 4.14. BLIF representation is very similar to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

126

Algorithm 4 Reactive Module Construction from KISS Description Part 1 
1: Input: KISS File, K

2: Output: Reactive Module File, R

3: RM R = new RM (<filename>);

{Lists of the external, interface, and private variables (step 1)}

4: for all i €  UOL do

5: ivar[indexl] = new interface-variable iv; indexl++;

6: end for

7: for all i 6 UIL do

8: evar[index2] = new external-variable ev; index2++;

9: end for

{D is the collection of FSM states}

10: for all i €  D do

11: pvar[index3] = new private_variable pv; index3++;

12: end for

{Create new atom CFA (step 2)}

13: printf(“atom cfa”); printf(“ controls ”); {Control declaration}

14: for j=0 to j <  index 1 do

15: printf(ivar[j]); {each interface variable}

16: end for

17: for k=0 to k <  index3 do

18: printf(pvar[k]); {each private variable}

19: end for

20: printf(“ reads ”) {Read Declaration}

21: for j=0 to j <  index2 do

22: printf(evar[j]); {each external variable}

23: end for

24: for k=0 to k <  index3 do

25: printf(pvar[k]); {each private variable}

26: end for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

127

Algorithm 5 Reactive Module Construction from KISS Description Part 2 
1: INPUT: Variable lists and atom CFA from part 1

2: OUTPUT: Reactive Module File, R

{The continuation starting from line 26 of part 1}

{Initialize Module (step 3)}

3: printf(“ init ”)

{All interface and private variables =  false except first state variable)

4: printf(pvar[0] = true);

5: for k=l to k <  index3 do 

6: printf(pvar[k] = false);

7: end for

8: for j=0 to j <  indexl do 

9: printf(ivar[j] = false);

10: end for

{Update Behavior (step 4)}

11: printf(“ update ”);

{Pseudo Description}

12: <For each line of the KISS representation, the guard is the appropriate input = true and that current 

state = true. The result is the next state variable = true and the appropriate outputs = true>

13: Return R;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

128

EXLIF file format used by FORTE. EXLIF is an extension of the LIF format in general. The EXLIF holds, 

in addition to combinational circuit truth tables, constructs to model sequential elements, like transparent 

latches and master slave flip-flops. It has constructs for describing structural hierarchy, tri-state drivers, 

various kinds of assertions, etc. Some simple modifications allowed BLIF to be converted to EXLIF and in 

turn read by FORTE also shown in Figure 4.14. These manual edits could be worked into a Perl script very 

easily.

//sis commands 
read_kiss <filename> 
state_minimize
state_assign <nova> or <jedi> 
source script.rugged 
write_blif <filename>

BLIF to EXLIF Manual Edits:

•  Remove start Jd ss , endJdss, and kiss code embedded in file

•  Remove external don’t care section (.exdc)

•  Add to the .latch definitions a elk signal and the type of flop it is (rising, falling)

•  Remove the .latch.order and .code portions

Figure 4.14: SIS Commands and EXLIF Requirements for FORTE Flow

Once the models are converted to EXLIF files, FORTE can begin to process them for refinement. 

The algorithm which FORTE uses to prove refinement between to EXLIF files is in Algorithm 6.

The running time for such an algorithm is approximately 0(m  *n) where n is the number of states 

and m is the number of transitions. This algorithm (6) and corresponding implementation code was not 

created as part of this thesis but supplied by Intel.

MOCHA Accommodations

Since the CFA backend produces a Reactive Module, MOCHA can be used to do refinement 

checking as well. However, this process requires some manual preparation of the file produced by the 

backend. [Raj98] describes refinement as a trace inclusion problem. To check that X <Rê  Y requires:

1. For every initial state, s of X, the projection of s to the variables of Y is an initial state of Y. Basically 

they need the same initial state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

129

Algorithm 6 FORTE Refinement Check for EXLIF Files 
l: Input: Two EXLIF Models, A and R with State Space E^ and Er

2: Output: Answer to the Refinement Question (R, A)

3: Let 04 S Ea and qR G Eff

4: Given a set of states, the set S, S0 is (E^ U Lr) \  S

5: Let x  be a vector of inputs common to both A and R

6: Let y/t(q/i, x) be a vector of outputs for A given the state o* and the inputs x

7: Let }>j?(qR, x) be a vector of outputs for R given the state q/{ and the inputs 3c

8: Let E„ be a set of sets of states reachable in n input sequences

9: Let a be a set of sets {(04 , qj?) | 04 £ EA, qs  e  E/{}

10: Let 7r(0 4 , x, q^’) = true if there is a transition from 04 to 0 4 ’ under input x 

11: Let pre(a) = {(0 4 , q«)| 3 x :  7r(04, *, q / )  n  Tr(qR, x, qR') n ( q / ,  q^’) G a} 

{Start of Algorithm}

12: Eo = 0

13: E^qt, q«) = V*, 3^(04, X) O yR<S\R, x)

14: k = 0 

15: repeat 

16: k = k + l

17: Et+i(qA, q«) = E*(q4, qff) \  p reE ^i^ ,  qR)

18: until Efc+i = E*

19: if V q/{ £ E«, 3 ot such that (q ,̂ q«) e  E* then

20: Return YES

21 : end if

22: Return AO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

130

2. For every reachable state of s of X, if X  has a transition from s l o t  then Y  has a matching transition.

The search can be done symbolically or enumerated with MOCHA. In the case that the test fails, it generates 

a counterexample of a trace on X  which is not a trace of Y. This may be computationally complex. Therefore 

some restrictions are placed on the modules, to verify X  -<Ref  Y.

1. The module Y  has no private variables - This requirement has to do with observability.

2. Every interface variable of Y  is an interface variable of X  - This requirement is a syntactic issue 

issue which allows the tool to function without the user explicitly providing a list detailing variable 

correspondence.

3. Every external variable of Y  is an external variable of X  - This requirement is also a syntactic issue.

Recalling the requirements for refinement, the 2nd and 3rd conditions are already met. However, 

a module created with the CFA Backend will have private variables representing states. The solution for 

this is to create a Witness Module, W. This is a module whose interface variables are the private variables of 

Y. Also, W should not contain any of the external variables of X. In turn a module, Y \  will be created with 

the original Y’s private variables declared as interface variables. Once this process has been performed then 

x \ \ w ^ Ref  Y’ as shown in [Raj99]. The procedure is naturally:

1. Create a module Y’ from Y  by changing private variables to interface.

2. Define a Witness Module, W, whose interface variables are the private variables of Y but exclude the 

observable (external) variables of X.

3. Check X\ \ W <Ref Y' with MOCHA

Since this process is not automatic it represents a potential bottleneck in the flow. The creation of a 

Witness Module requires creativity on the part of the user since the variable reassignment may be nontrivial 

in order to maintain correct functionality. In addition the parallel composition is also manual. There is 

much information required to fully understand the MOCHA tool which is not described here. The reader is 

referred to the references provided for more information.

Composite Design Flow

In conclusion, in order to demonstrate a proof o f concept for this surface refinement methodology, 

this thesis assembled the previously described components into a complete flow as shown in Figure 4.15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

131

®  Metropolis Model (.mmm)

CFA Backend 
(automatic)of CFA (X)

SIS
sta te .a ss lg n  script

[automatic]

Edit and Parallel 
Composition 

(manual)

MOCHA Manual Edits to BLIF and 
NEXUF2EXE

BUF Me developed In 
previous Iteration

Figure 4.15: Surface Refinement Flows for METROPOLIS

As one can see from Figure 4.15, the process begins with a METROPOLIS model. Using the 

METROPOLIS compilation engine one can simply run it through the CFA backend automatically. This will 

return a reactive module file, a KISS file, and a visual representation. The reactive module will be fed to 

MOCHA but first it must be augmented with a witness module, W, manually to do refinement checking on 

it. This was described previously. The visual representation is simply for viewing and debugging. The main 

trunk of the flow requires that you submit the KISS file to SIS. The script shown previously in Figure 4.14 is 

run to assign state encoding and logic to the symbolic states in the KISS file. This information can then be 

written out in BLIF format. Then the slight manual edits as described previously must be done to the BLIF 

file to convert it to EXLIF for FORTE. Finally one runs NEXLIF2EXE (provided by FORTE) to convert the 

EXLIF to an executable format for FORTE. Both the FORTE and MOCHA trunks of this flow assume the 

presence of another file previously created will represent the more abstract model to be compared. These 

files will be inserted in the flow at the appropriate locations as shown. Aspects of this methodology as 

applied to METROPOLIS have been shown in [Dou04]. The asymptotic analysis of various aspects of this 

flow (as detailed previously) is collected in Table 4.6. Further results of this design flow will be shown in 

Chapter 5 on an industrial case study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

132

Description Analysis Comments
CFA Overall Size O(GNT) GNT =  \GroupingJJode.Types\
CFA Creation Time O(NV) NV =  \Nodes.Traversed Jby.Visitor J'unctions]
CFA Visual Rep. Creation Time O(Q) Q =  \CFA.ControlJx)cations\
KISS File Creation Time 0(2*(GL*IV + GL*OV» \GroupJ^ocations| and \Input\, \Output\ Vars.
Reactive Module Creation Time O(L) L =  KISS Lines
Forte Running Time 0(m * n) N =  \States\ and M =  [Transitions]

Table 4.6: Asymptotic Analysis of Surface Refinement Flows

4.5 Compositional Component Based Service Refinement

Finally, compositional component based refinement will discuss the how changes internally made 

to a component can be related. Whereas the previous approaches examined relationships between com­

ponents (event based), and changes to observable at the periphery (interface based), this approach allows 

changes to be related at the “lowest” level. Very frequently designers want to change protocols offered by 

services, size of storage elements, memory access or dequeuing polices, or add more service functionality 

(modes, operands, etc). This approach allows for the designer to specify each individual service as a small 

component. A change to this component can be modeled as an individual component as well. Refinement 

verification is then performed against these two small relatively simple components. Once this has been 

performed, large systems can be composed from these smaller systems. The two verified components can 

then be swapped in and out of the two designs without performing additional refinement verification. The 

refinement problem is greatly simplified in this way since the refinement effort to check the small individual 

components is much more manageable than verifying the larger, composed system. Also the modular nature 

of this approach allows for easy system modification. The bulk of this section is based directly on work 

from [Olg03aj. Therefore, in this section, new contributions unique to this thesis will be denoted with 4  to 

avoid confusion between new and established work.

4.5.1 Proposed Methodology

The methodology for this approach uses the work of [Olg03a] and their tool SynCo [Olg03b]. The 

approach overall is termed Depth Refinement. The contribution of the methodology contained here is a set of 

extensions for system level design (M et r o po lis , M etro  II and SystemC for example). These extensions 

include how to represent events, refinement domains (subsystems), relations between subsystems, gluing 

relations between subsystems, visible events, and visible properties. These are defined similarly to the 

definitions in Section 4.1.3. The reader needs to begin this discussion by reviewing the LTS foundations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

133

mentioned in this chapter’s background section.

Definition 4.5.1 Event 4  - Events, Eg, in LTS S are a set o f transition labels such that: Eg C E.

Events are essentially a subset of the labels on transitions. All events are labels but not all labels 

are events. When LTSs are created from an environment such as M etropolis  they should be created such 

that events are captured when they cause a change in the state of the system or are involved in a property of 

interest.

Definition 4.5.2 Refinement Subsystem t|k - Let SR be a refined component, < Q r , Q qr, E r , Tr , Ir  > .  A 

refinement subsystem is a collection o f states in the refined component, Q^sn defined:

1- fijg C Qr,

2. Qr = fijff U...U Qjg, and

3. for all pairs o f Q̂ f  and Q’jg, D Q ^  = 0.

The first requirement is that the states in the refinement subsystem are a subset of the states in 

the refined component. Basically this means refinement subsystems can’t introduce new states. The second 

rule is that the union of all the refinement subsystems equals the state space of the refined component. This 

means that when all subsystems are considered, the state space is the refined component. Finally the third 

requirement is that refined subsystems do not include states from other refined subsystems.

Definition 4.53 Subsystem Refinement Relation 4  - Let SRR be a relation between SR (refined compo­

nent) and SA (abstract component). The states q^n G QgSn and qAn € Qa are related when written q^sn V 

qAn-

This is a simple way of stating which states in the refined model correspond to those in the abstract

model.

Definition 4.5.4 Subsystem Gluing Relation 4ft - Let GI be a gluing invariant between SR and SA. The

states q%sn G Q%sn andqAn e  Qa, V ^ v  qAn are glued, written q fn p qAn, k(q%Sn) => h(qA)-

T his is the sam e sty le  o f  g lu ing  re la tion  w hich  w as d iscussed  prev iously  in  Section  4.1.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

134

Definition 4.5.5 Visible Event <|k - For a system S, a visible event set,EEV, is defined as:

1- ENEVQEfiE,

2. for all pairs and where a n d Q ^ C Q  and q%f £ and q*jg £ et £ E%y iff 3 f,- £

Oftl x  e i x  #/J2'

The first requirement is that the visible events are a subset of the events. The second requirement 

is that for each pair of refinement subsystems, where the subsystems are part of the same component, the 

events are visible if they are labels between the two different refinement subsystems (i.e. not labels inside 

the refinement subsystem).

SystemC, M e t r o po l is , or M etro  II models can be used to automatically extract E^. Refine­

ment subsystems and subsystem refinement relations are then defined by the designer. The subsystem gluing 

relation now is produced automatically as a result (whereas GI was defined manually before). Refinement 

properties can then be defined over Eev  (which also fall out of the proposed definitions). These properties 

can be used for verification purposes (such as refinement).

Definition 4.5.6 Visible Property 4k - For a system S with set Eev, a visible property is the set o f variables, 

Var = {Xi,..., Xn} with the respective domain, D assigned to a path o f states along a set o f transitions 

assigned visible events.

For each of the LTS based service components one can correlate them to existing SystemC, 

M e tr o p o l is ,  or M e tr o  II code through since the code uses its own notion of events to do synchro­

nization. We can use each M e tr o p o l i s /M e t r o  II/SystemC notify(e„) call (or M e tr o p o l i s  request() or 

await()) as an E^ in LTS. State variable sets will be defined for each SystemC module, METROPOLIS media 

or process, of M e tr o  II component (/: Q —► SP). This process is shown in the pseudo-algorithm 7.

In addition to identifying refinement opportunities and definitions in order to formalize depth 

refinement, naturally refinement itself for LTS systems must be formally defined. Since this thesis will 

describe services as LTS, compositional component based weak refinement from [Olg03a] will be used. 

This specifies the following rules for refinement, where T) is the refinement relation :

1. Strict transition refinement - ( ^ T ) ^ A ^ - ^ ^ £  Tr ) => 3q'A (qA -̂-> q/A e T AAq'R r\qA)

2. Stuttering transition refinement - (qR T| qA A qR cfR £ TR) =4> (cfR t| qA)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

135

Algorithm 7 LTS U se in  S y s te m  L e v e l  A r c h i t e c t u r e  S e rv ic e  R e f in e m e n t 4  
Require: M is a set of SystemC modules, {mi,...,nw} or

Require: C is a set of M e tr o  II components, {ci,...,ca?} or

Require: P  is a set of METROPOLIS media, {pi ,...,pv}

Ensure: X =  M U PU C

1: § is a set of LTS where s : x„ —> s„.

2: Q for s„ is defined by I : Q —> SP {SP is defined manually}

3: Synchronization ((a  when p ) is defined manually for §

4: S? (Context-in Component) is produced automatically

5: Q/fo is defined manually

6: qjjjJ V qAn is defined manually

7: Subsystem Gluing Relation is produced automatically

8: ERV is produced automatically

9: LTL/CTL/Refinement properties verified automatically over visible events in LTS

3. Lack of old or new deadlocks - (qR r| /  qA AqR -/> R) =>• ((qA -f* A) V ((qA ~^q'A £ TA) => (qR € D)))

4. Lack of X-divergence - (qR q qA) => -i (qR A  ^  ...)

5. External non-determinism preservation - (qA A  q'A G TA /\qR r\ qA)

=> 3q'R,qfR,qA (q'R r\qAAq'R -^  ^  GTRAqA - ^ ^  ETAAq'^T\ q%)

We note q -/> when {q[ &Q/ \ e  GE (q-^* q') $ T )

The first rule essentially states that if there is a transition in the refined LTS from one state to 

another, then there must be the same transition in the abstract LTS. There are also syntactic restrictions that 

the transitions have the same label. The second rule states if there is a new (x) transition in the refined 

LTS, then its beginning state and ending state must correspond to the same state in the abstract LTS (this 

correspondence must be defined in the gluing relation). The third rule states if there is a deadlock in the 

refined LTS, then there is either a deadlock in the abstract LTS or the refinement LTS introduced a new 

deadlock. This allows that individual components can deadlock in the refinement as long as the composition 

of components still makes progress. The fourth rule is that there are no new transitions in the refinement that 

go on forever (x loops for example). The fifth and final rule is if there is a transition in the abstract LTS and 

the corresponding (glued) refined LTS state does not have any transition then two conditions must be true: 

1) there must be another refined state, qR’, that corresponds (is glued) to the abstract state, qA, 2) qR’ must 

take a transition to another refined state, qR”, and in the abstract LTS there must exist a state, qA”, which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

136

glued to to the refined state, qR”. Illustrations of rules 1, 2, 4 and 5 are shown in Figures 4.16, 4.17, 4.18, 

and 4.19. In the Figures, qR refers to a state in the refined model whereas qA is a state in the abstract. Each 

state is grouped into abstract or refined groups. Arcs between the two groups indicate gluing relations.

Refinement Abstract Refinement Abstract

Figure 4.16: Strict Transition Refinement Figure 417: Stuttering Transition Refinement

Refinement Refinement Abstract

Abstract
~  r /q A j

i \  "I A
i qR’ :

i ©  ;
• qR* •'

J : X .• qR” tau L J

( qR” J-------------- H  qA” } f q^ J
**Tk.

Figure 4.18: Lack of ̂ -Divergence FiSure 419: External Non-Determinism
Preservation

The design flow for depth refinement verification now consists of the following three steps. These 

are based upon a design flow using SynCo. The results of such a design flow on specific communication 

structures of the FLEET architecture are shown in Chapter 5.

1. The first step is to create a .fts file for each component. This file defines LTS transitions and states 

for each service. This creation has the potential for automation but is not currently. An automation 

scheme would involve capturing the states where the combination of each event’s presence is unique 

(enabled or disabled) and when events are involved in a service interface or when they are commu­

nicated between services using, wait() or notify() (in SystemC for example). This process would be 

similar to the CFA creation process outlined for depth refinement. A sample set of .fts files for a 

consumer LTS (part of a larger producer/consumer example) are shown in Figures 4.20 and 4.21. The 

abstract consumer is either waiting to consume or consuming. The refined consumer allows for a 

“clean up” procedure (a purging of sorts) after waiting but before it begins to consume again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

137

Transition System 
//Two state values 
type SIGNAL = {consume, wait} 
local con : SIGNAL

Transition System 
//Three state values (added clean) 
type SIGNAL = {consume, wait, clean} 
local conR : SIGNAL

//Can only be in one state 
Invariant
(con = consume) \/ (con = wait)

//Initial state 
Initially (con = wait)

//Transition to consume (“ get’’ event) 
Transition get : 
enable (con = wait) ; 
assign con := consume

//Transition to wait (‘‘stallC”  event) 
Transition stallC : 
enable (con = consume) ; 
assign con := wait

Figure 4.20: .fts for Abstract Consumer LTS

Invariant
(cohR = consume) \/ (conR = wait)
\/ (conR = clean)

//Initial state 
Initially (conR = wait)

//Transition to consume (“ get’’ event) 
Transition get : 
enable (conR = clean) ; 
assign conR := consume

//Transition to wait (‘‘stallC’’ event) 
Transition stallC : 
enable (conR = consume) ; 
assign conR := wait

//Transition to cleanup (‘‘cl”  event) 
Transition cl : 
enable (conR = wait) ; 
assign conR := clean

Figure 4.21: .fts for Refined Consumer LTS

2. The second step is to create a .inv file for each set of components (the abstract and refined versions). 

This file defines the gluing invariants between abstract and refined states. In Figure 4.22 the two 

“consume” states are glued. The abstract consumer’s “wait” state is glued to the refined consumer’s 

“wait” and “clean” states.

3. The third step is to create a .sync file for the whole system. This file defines synchronization and in­

teractions between LTS components. There should be a .sync file for the refined and abstract systems. 

One file for the abstract LTSs’ interaction and one for the refined LTSs’ interaction. When composing 

modules together, the total number of states in the system is less than the product of number of states 

in each component. This is one of the strengths of synchronization and its partial specification. In 

Figure 4.23 the .sync file for the abstract producer and consumer example system is shown. Each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

138

((con = consume) <— > (conR = consume))
/\((con = wait) <— > ((conR = wait) \/ (conR = clean)))

Figure 4.22: .inv for Consumer LTSs

event of the LTSs is enabled depending on the state of the collection of LTSs.

These three sets of files are provided to SynCo for both the abstract and refined systems. SynCo 

will then check the validity of the refinement rules outline previously. This design flow can be automated 

partially. As mentioned, the .fts file creation can be automated starting from a METROPOLIS or SystemC 

description. The .inv file creation can be automatic but must start from some designer specification. The 

state correspondence must either be explicitly described by the designer in a separate file or implicitly via 

a state naming conventions. The .sync file must be manually created. In large systems this can be done 

hierarchically to make the process more manageable. This type of automation is potential future work.

4.6 Conclusions

This chapter has introduced three approaches to architecture service refinement and its verifica­

tion. These are: event based (vertical, horizontal, diagonal), interface based (surface), and compositional 

component based (depth) refinements. Each is a potential tool in a system level architecture service devel­

opment design flow. Each has their own unique strengths and weaknesses. For example it has been shown

that an event based approach is scalable and allows two distinct system level design exploration scenarios. 

However, event properties may be difficult to specify and capture. Interface behavior capture allows for IP 

integration and relies on a very nice formalism which is currently verified by existing (free) tools. However, 

it can be time consuming and requires certain syntactic conditions and manual steps which may require 

more effort and knowledge on the part of the designer. Finally compositional component verification also 

employs a clean formalism and allows specific changes to be made in the granularity of individual service 

offerings. However, it requires that a manual correspondence between states be made in a gluing relation 

and also requires that the overall behavior of the system (synchronization) be specified manually. In imple­

menting a design flow, one should use each of these techniques in particular situations to maximize their 

strengths while minimizing their weaknesses. In Chapter 5 specific examples of each of these techniques 

will illustrate their potential uses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

139

//Buffer Events (reads and writes)
//‘‘writel’’ event is enabled when the LTSs are in the following states 
(writel) when
((prod = produce) /\ (buf = empty) /\ (con != consume)),

(write3) when
((prod = produce) /\ (buf = notempty) /\ (con != consume)),

(readl) when
((prod != produce) /\ (buf = notempty) /\ (con = consume)),

(read3) when
((prod != produce) /\ (buf = full) /\ (con = consume)),

//Producer Events 
make when 
(prod = wait),

stall when 
(prod = produce),

//Consumer Events 
get when 
(con = wait),

stallC when 
(con = consume)

Figure 4.23: .sync for Producer/Consumer LTSs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

140

Chapter 5

Design Flow Examples

“Results! Why, man I  have gotten a lot o f results. I  know several thousand things that won’t 
work.” - Thomas Edison, Inventor

Earlier in the description of this thesis’ goals, claims were made regarding the accuracy and 

efficiency of the proposed design flow. Previous chapters have gone into great detail regarding the design 

flow. Particularly the development of system level architecture services has been described (Chapter 2), their 

characterization (Chapter 3), and finally their refinement (Chapter 4). These chapters have shown the level 

of abstraction possible as well as this design flow’s modularity. This chapter will now specifically show 

how each of those approaches maintained the accuracy and efficiency needed by ESL tools for adoption by 

the larger EDA industry. This demonstration will be done through a series of case studies each designed to 

highlight a particular aspect of the design flow outlined.

Accuracy and Efficiency Interpretations

Before discussing the case studies, it is important to understand what the is meant both by accuracy 

as well as efficiency. Formally accuracy is defined [Mer07] as: “degree of conformity of a measure to a 

standard or a true value”. In the case of design space exploration of embedded systems, the “standard or 

true value” is the value that would be obtained by the actual implementation of the design. For example, if 

one where to create a model of an image processing system, an accurate model would be one in which the 

predicted execution time obtained by simulation was close to the actual value of the existing system. How 

close is “acceptable” depends on a variety of factors. One factor is the domain of the design. For example, 

safety critical systems such as avionics or medical systems may require very little deviation. Another factor 

is what quantity is being measured. For some systems, memory usage may need to be very exact (small 

embedded devices for example) while for others it may not be as important (super computer systems for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

141

example). A 1% error may be a large deviation for some measurements, while 30% acceptable for others. 

Finally, acceptable accuracy will depend on the level of abstraction. More abstract systems typically require 

less accuracy because they are usually concerned with making broad system level decisions and increasing 

accuracy is not only not required (design simulation speed is more desirable) but also potentialy not possible.

Since accuracy is such a contextual concept, this work requires accuracy to the extent that 

fidelity holds. Fidelity was defined in Chapter 1 as a required ordering of measurements. This property 

does not mean more accurate measurements necessarily. For example consider three systems A, B, and C. 

Assume the actual execution time for A is 3 seconds, B 2 seconds, and C 5 seconds. Therefore the ordering 

from fastest to slowest is B, A, C. Consider a very accurate simulation which reports A as 2.7 seconds, 

B as 2.8 seconds, and C as 5.1 seconds. This ordering would be A, B, C. While the average error of the 

measurements is 0.4 seconds, fidelity does not hold. Contrast this with a highly inaccurate system which 

predicts A as 100 seconds, B as 50 seconds, and C as 200 seconds. The average error is much higher (113 

seconds) but the system ordering is correctly B, A, C. In the case studies to follow, this ordering or fidelity 

is maintained in all cases. In addition average accuracy is quite good as well which is also desirable since 

for the systems that do require accuracy, the designer will have a good feel for the viability of the design.

The second concern, efficiency, again has many various meanings when discussing tool devel­

opment. Primarily it has two interpretations. The first refers to how easily a designer can express his/her 

desires. For example, a system defined more efficiently by this definition may result in less lines of code, 

more library functions, or a larger design library. The result of being more efficient in this space will result 

in a design being completed faster (although not necessarily correctly which is why efficiency is only one 

part of the proposed design flow). The second interpretation of efficiency has to do with the running time of 

the tool. A more efficient tool will take less time to simulate a design. This is accomplished by using careful 

programming techniques and algorithms with low asymptotic running times. In this work, the second inter­

pretation is what is of importance. In all cases, the running time of the design flow implemented is as fast or 

no more than 20% slower than competing approachs.

The contribution o f the four case studies presented in this chapter is a demonstration o f the proposed 

design flow ’s use o f specific modeling techniques, characterization o f programmable platforms, and 

refinement verification to ensure design point fidelity while maintaining a simulation running time no more

than 20% slower than competing approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

142

5.0.1 Chapter Organization

This chapter is organized around four case studies. The first case study presented in Section 5.1 is 

an exploration of four potential Motion-JPEG (MJPEG) encoder implementations. This example is provided 

to show how the characterization process from Chapter 3 is superior than using area based estimations (the 

naive method). The second exploration in Section 5.2 models an H.264 deblocking filter and is meant to 

demonstrate the modularity in which the architecture service were created allows for a variety of mapping 

scenarios for various functional models. The third exploration in Section 5.3 demonstrates how the topology 

of an architecture model can be changed, remapped and the resulting behavior of the system still be verified 

to be a refinement of the previous, more abstract mapped instance. This is a combination of “vertical” and 

“surface” refinement discussed in Chapter 4. The final demonstration in Section 5.4 contrasts the previous 

section by performing refinement without changing the topology but by simply replacing services with other 

services. The services being replaced are more abstract while the service being used in the replacement are 

more refined. This requires that the overall system behavior be preserved after the change. This process was 

described as “depth” refinement in Chapter 4.

5.1 Characterization Aided Fidelity Example: Motion-JPEG

To demonstrate how a programmable platform performance characterization method can be used 

to make correct decisions during design space exploration, the following multimedia example is provided. 

This example deals with evaluating various architecture topologies and illustrates the importance of accu­

racy in characterization and exemplifies the fidelity achieved with the proposed design flow’s method. In 

an exploration like this one, the designer is interested in choosing the design with the best performance. 

Therefore it is not as important that the exact performance be known, but rather that the ordering of the 

performances amongst the candidates is correct (hence the emphasis on fidelity). Without the methods cov­

ered in this thesis, estimated values would be used to inform the designer of the predicted performance. 

These values may come from datasheets, previous simulations, or even best guesses (techniques described 

in Chapter 2, Section 2.4). None of these are preferable to actual characterization as will be shown.

The application chosen was Motion-JPEG (MJPEG) [Gre91] encoding and both the functional 

model and architectural service models were created in the M etropolis design environment. Investigated 

are four MJPEG architectural service models. A  single functional model was created in METROPOLIS which 

isolated various levels of task concurrency between the DCT, Quantization, and Huffman processes present 

in the application. These aspects of the functional model were then mapped to the architectural model. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

143

topologies are shown in Figure 5.1. Each of the topologies represents a different level of concurrency and 

task grouping. A key is provided to show what functionality is mapped to which aspect of the architectural 

model. The diagrams show the architecture topologies after the mapping process. This was a one-to-one 

mapping where each computational unit was assigned a particular aspect of MJPEG functionality. The 

computation elements were MicroBlaze soft processor models realized by METROPOLIS media and the 

communication links were Fast Simplex Link (FSL) queues also realized as METROPOLIS media. In order 

to facilitate the mapping, METROPOLIS mapping processes were provided one-to-one with the MicroBlaze 

service models. In addition to the M etropolis simulation, actual Xilinx Virtex II Pro systems running 

on the Xilinx ML310 development platforms were created. The goal was to compare how closely the 

simulations reflected the actual implementations and to demonstrate that the simulations were only truly 

useful when using our characterization approach.

Completely
Sequential

Arch 1

Arch 2

Y, Cr, and C b l . —  -» -m 
com ponents (  D ( Q 
parallelized

Functional Kev: 
Preprocessing (P)
DCT (D)
Quantization (Q)
Huffman Encoding (H) 
Table Modifications (TM) 
Collector (Col)

1 CD

OCT and
Quant

Arch 3
Arch 4

Huffman
operations
parallelized

Mapping P rocess

Mapping Guide:

Microblaze Soft 
uBIaze ) P rocessor 

(uBIaze)

Fast
I FSL ) Simplex Link
X  J  <F S L >

Figure 5.1: MJPEG Architecture Topologies in M etropolis

The results of a 32x32 pixel image MJPEG encoding simulation are shown in Table 5.1. The 

table contains the results of M etropolis simulation and the results of the actual implementation. The first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

144

column denotes which architectural model was examined. This column corresponds to Figure 5.1. The 

second column shows the results of simulation in which estimations based on design area and assembly 

code execution were used. The third column shows the simulation results using the characterization method 

described previously. Provided with the results is the percent deviation from the real cycle values. Notice 

that the estimated results have an average difference of 35.5% with a max of 52% while the characterized 

results have an average difference of 8.3%. This is a significant indication of the importance of the proposed 

method. In addition, the fifth column shows the rank ordering for the real, characterized, and estimated cycle 

results respectively. Ideally all three values would be the same. Draw your attention to the rankings for Arch 

2 and Arch 3. Notice that the estimated ranking does not match that of the real ordering! Even though 

the accuracy discrepancy is significant, it is equally (if not more) significant that the overall fidelity of 

the estimated systems is different. Finally the maximum frequency according to the synthesis reports, the 

execution time (cycles * period), and area (slice) values of the implementation are shown. It is important 

to notice several trends may not have been taken into account using an estimated method. One is that the 

largest area design (Arch 4) requires the fewest cycles. However, it also has the lowest clock frequency. This 

confirms that while one might be tempted to evaluate only the cycle counts, it is important to understand the 

physical constraints of the system only available with characterized information.

System Est. Cycles Char. Cycles Real
Cycles

Ranking 
(Real, Char, Est)

Max
Mhz

Execution 
Time (Secs)

Area
(Slices)

Arch 1 145282 (52%) 228356 (25%) 304585 4,4,4 101.5 0.0030 4306
Arch 2 103812 (33%) 145659 (6%) 154217 3, 3,2 72.3 0.0021 4927
Arch 3 103935 (29%) 145414(1.2%) 147036 2, 2,3 56.7 0.0026 7035
Arch 4 103320 (28%) 144432 «  +1%) 143335 1,1,1 46.3 0.0031 9278

Table 5.1: MJPEG Encoding Simulation Performance Analysis

When discussing the efficiency of this method in terms of simulation time, the two points of 

interest are the simulation times for the simulations using estimated data versus those using characterized 

data. In this case, due to the unique M etropolis execution semantics described earlier, the simulation 

times are the same for each method. The increased fidelity therefore comes at no extra “cost” to the design.

5.2 Service Aided Mapping Modularity Example: H.264 Deblocking Filter

The proposed design flow in this work does not specifically address functional modeling. However 

it is clear that the more architecture topologies that can be created from service models, the larger the 

potential design space exploration. Therefore the more modular the individual services, the more unique

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

145

interactions that can be explored and hence more topologies can be created. This section will demonstrate 

the advantages of this modularity and show how unique design points can be analyzed with a high level of 

accuracy.

The first stage of this process is the functional modeling of an application. Functional model 

exploration is twofold. The first stage is behavior capture. This is the process of examining the various 

ways to express the behavior of an application. An important area of exploration is the examination of the 

various levels of concurrency which can be present in an application. This process is covered in [Shi06] 

using an algebraic representation. This process will not be discussed in depth here and the reader is directed 

to read the provided reference for more information. For this work it is sufficient to understand that certain 

aspects of an application can occur in parallel. These parallel aspects can then also be sequentialized. Given 

all the operations in a design, each can be classified as sequential or parallel in relation to each other. The 

design space then becomes the manipulation of these relationships and the partitioning of the sets in which 

these relationships are considered. Sequential operations can be executed on one service while parallelism 

requires a service for each parallel operation.

The second stage is to take one of the candidate functional representations and assigned aspects 

of the functionality to architectural services which compose a architecture instance. This is mapping in 

M e t r o p o l i s . This requires a methodology to partition the functional model (this is the first stage [Shi06]) 

as well as a set of architecture components (as shown in Chapter 2). The METROPOLIS framework then 

evaluates potential performance by mapping the functional model onto an architectural model for simulation. 

The architecture models for this flow are based on the Xilinx Virtex II Pro FPGA platform [Xil02] created 

in METROPOLIS. These models were described in Chapter 2. Specifically this thesis will be examining 

architectures based on MicroBlaze soft-microprocessor cores and Fast Simplex Links (FSLs). An FSL is 

a FIFO-like communication channel, which connects two MicroBlazes in a point-to-point manner. These 

components were selected because they can easily correspond to dataflow applications like the one to be 

presented. Because of the way in which these models were created, this section will demonstrate that any 

functional model that could be created using the algebraic methods, can be presented with a corresponding 

architecture model for a one-to-one mapping.

What will follow is a discussion of the application details, how mapping is performed, and an 

analysis of the results obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

146

5.2.1 Application Details

This thesis chose to explore the H.264 deblocking filter algorithm since it is responsible for a sig­

nificant percentage (approx. 33%) of the total computational complexity of H.264 [Mic03], The deblocking 

filter function is applied to a block (4x4 pixels) border of an image for the luminance and chrominance 

components separately, except for the block borders at the boundary of the image. Note that the deblocking 

filter function is performed on a macroblock basis after the completion of the image construction function.

The filtering is applied to a set of eight samples across a block border as shown in Figure 5.2. 

When block border VO is selected, eight pixels denoted as a, and fc, with i =  0, ■ ,3 are filtered. The other

fifteen rows along VO are also filtered. Likewise when block border H I is selected, eight pixels denoted as 

c, and di with i =  0, • • • ,3 are filtered as well as the other fifteen pixel set along H I. Vertical block borders 

are selected first from left to right on the macroblock (in the order of VO, VI, V2, and V3 in Figure 5.2) 

followed by horizontal block borders from top to bottom of the macroblock (in the order of HO, H I, H2, 

and H3 in Figure 5.2).

macroblock (16x16pixels)

block VO V1 V2 V3
border

HO

H1

H2

H3

Figure 5.2: Macroblock and Block Border Illustration for H.264 Deblocking Filter 

The filter function can be roughly divided into two parts. The first function is a derivation function

a3 a2 a1 aO bO b1 b2 b3

block
4x4pixels

pixel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

147

of boundary filtering strength and the second function is a filtering function for samples across the block 

border.

Figure 5.3 is the pseudo code for the deblocking filter derived from H.264 reference software 

[Tho03], [MPE]. DeblockMB checks whether neighbor macroblocks (16 x 16 pixels) are available for a 

target macroblock. GetStrength outputs a boundary strength (s fry ,*) for the filter, and EdgeLoop does 

filtering for the eight samples depending on the boundary strength. The boundary strength is in the range 

of 0 and 4 (integer number) and the number is determined depending on slice type, reference pictures, the 

number of reference pictures, and the transform coefficient level of every block according to the encoding 

profile. This exploration is carried out for the worst case among five boundary strengths. It was observed 

that the total cycle count is the worst (largest) when the boundary filtering strength is one. GetStrength and 

EdgeLoop function transactions will be the system level units of granularity for this exploration.

D : DeblockMBQ; 

f o r  i= 0 , l  do

fo r  ,3  do

J j :

fo r  k= 0 ,-• •,15  do

Pk : striJ}k = GetStrength(i,j,k); 

end fo r

fo r  k= 0 ,■ • •, 15 do

Qk : EdgeLoop(i,j,k,striJtky, 

end fo r  

end fo r  

end fo r

Figure 5.3: Deblocking Filter Pseudo Code

5.2.2 Mapping Details

Once the functional model topology has been created, one must transform this into a M e t r o p o l is  

functional model. This case study ultimately is interested in investigating potential clock cycle counts 

when the functionality is mapped and simulated with an METROPOLIS architecture model. Therefore it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

148

is important that functional model actions have consequences in the architecture model. METROPOLIS’ 

higher abstraction level allows functional model statements to be classified into three primitive functions: 

read, write, and execute as previously described. The MicroBlaze elements have corresponding functions. 

Mapping amounts to correlating these functions to each other so that the appearance of a call in the functional 

model triggers its corresponding call in the architecture model. The total number of clock cycles required is 

found by accumulating cycles for read, write, and execute functions triggered in the architecture services. 

Figures 5.4 and 5.5 show how GetStrength and EdgeLoop in the functional model are composed of these 

primitive functions, where an argument type in execute is the the type of execution operation being carried 

out and arguments of read and write are the amount of transfered data in bytes. The arguments to read, 

write, and execute are translated by the M e t r o p o l is  characterizer databases. This process translates into 

a cycle count for each operation (Chapter 3 details this process). This work will refer to a process with 

GetStrength and EdgeLoop functionality as a “filter process” henceforth.

G e tS tren g th (){  

e x e cu te (ty p e1); 

mem_read(2wd) ; 

e x e c u te ( ty p e 2 ); 

mem_read(8wd) ;

e x e c u te ( ty p e 3 ); 

w r i t e ( s t r e n g th ) ;

EdgeLoop(){

e x e c u te ( ty p e 4 ); 

mem_read(8wd);

r e a d ( s t r e n g th ) ; 

mem_read(8wd) ; 

ex ecu te (ty p e5 ) ; 

mem_write(8wd);

Figure 5.4: Decomposition of GetStrength Function Fi^  5 5: Decomposition of EdgeLoop
Function

The mapping in this exercise is carried out in such a way that a filter process and a communi­

cation channel in the functional model are mapped onto a MicroBlaze and an FSL in one-to-one manner 

respectively as shown in Figure 5.6. The left hand side of this illustration is the functional model and the 

right hand side is the architectural model. The functional model is partition into sequential and parallel 

operations. Shaded areas indicate how many services are required (some services may be supporting more 

operations depending on how many circles are in each shaded area). P indicates GetStrength and Q indi­

cates EdgeLoop activities. These shaded areas are each given a process identification number (PID). Arcs 

between each side indicate how the mapping was performed. Only two examples are shown here. These are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

149

topologies H and C. All the topologies will be shown in Figure 5.7.

In this thesis, a source process in the functional model is defined as follows: A “source process” 

(SRC) is a storage element with stream data and baseband data. A source process communicates with “filter 

processes” in such a way that a filter process sends 32-bit wide data (a read/write flag, a target address, and 

a target data length in this order) and afterwords a source process sends or receives data in a burst transfer 

manner. The source process has in/out ports connected to all filter processes as shown in Figure 5.6 and 

receives requests from the filter processes in a first-come-first-served basis with non-blocking reads.

The source process is also mapped onto a MicroBlaze. The length of a FIFO connected between 

the source process and filter processes is large enough so that processes are not blocked on write operations. 

For this case study, the source process FIFOs have a depth of 16. The length of a FIFO between filter 

processes changes in this case study, and is represented by N  in Figure 5.6.

Fu
nc

tio
na

l 
To

po
lo

gy
 

C Functional model , Architectural model

C ® % 0
PID1

P, GetStrength() Q, EdgeLoopQ

' ^ 3 ul3lazei v j ^ ’ih=16
Blaze |

length = N J
.......

Fu
nc

tio
na

l 
To

po
lo

gy
 

H Functional model Architectural mode|

PID1 0%/̂

C ^ “ a 5 )  J
( ] PID3
V* ±  /'-'N

-(pV » k q ) )

\X  j  uBIaze L  1g

fu H h ^ v * — %

P, GetStrengthQ Q, EdgeLoop()

Figure 5.6: Mapping a Functional Model onto an Architectural Model for H.264

Provided that the number of MicroBlazes is three and under, 14 functional topology candidates 

are obtained and shown in Figure 5.7. As in Figure 5.6 a gray zone represents what will be executed on 

each MicroBlaze (a “partition”; called a “mapping” in this thesis) and resource ID is denoted by PID once 

again in the figure. For example, (C) in Figure 5.7 implies that resource 1 (PID1) has computational block P 

(GetStrength) and resource 2 (PID2) has computational block Q (EdgeLoop). Another example is topology 

(F) which illustrates two processes as well. PID2 contains Q functionality. PID1 has a collection of P and 

Q functionality. These candidates will form the basis for the design space exploration to follow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

150

(T-1) (T-2) (T-3)

© — *© ) ( g )--

<A>
G ( f > - ®

' B> P1D1
C ® - ®PID2
c ® > —®

(C)
PID1 PID2

G ( e > ® 0

<D> PID1
c ® ~ ®... «r............... pt£j2

G < p> - < 5 >

<F> p,D!

G I  PID1
(T>— *(<£)

<E> PID1
G ® ~ ®

li WM
G ® —

<G>

G ® - ®

(J)
MD1 PID2

C C E > - ® DP1D3

^  PI01 MD2
^ ® - ® dG T 

® - ®

,K) P1D1
G ® - ® 0tl P103
(T'do— *Ce)

(>->
G  ^£5— Ke )

PID1 PID2
G ® - ®  D

^  PID1 P1D3
G  G >—G )

P I D 2 j T  

^  PtDI PID2

G ® - ®
<N»
Q ( p ) — >(cp

Pjgl

Figure 5.7: H.264 Functional Topology Mapping Candidates

5.2.3 Design Space Exploration Results

The results detailing execution cycle counts for the functional topology candidates explored in 

Figure 5.7 are discussed in this section first. Figure 5.8 shows the total execution cycle count breakdown 

(computation cycles, communication cycles with a source process, and waiting cycles) when the length of a 

FIFO between filter processes (N denoted in Figure 5.6) is size one. The waiting cycles accumulate in two 

following cases: when a filter process waits for other filter processes to finish their transaction with a source 

process and when a filter process waits for data to come to a FIFO from other filter process.

The vertical axis in Figure 5.8 is the number of clock cycles required and horizontal axis shows 

topologies (A through N) as shown in Figure 5.7. B through G have two bars, where the first bar corresponds 

to process 1 denoted by PID1 in Figure 5.7 and the second is process 2 denoted by PID2. H  to N  have three 

bars, where the first bar corresponds to process 1 denoted by PID 1 and the second and third bars are results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

151

of process 2 and process 3 denoted by PID2 and PID3 each.

The simulation results demonstrate that workload balance has a strong effect on execution time 

for a multiprocessor system. Case H  is the best case in terms of workload balance and as a result, the total 

amount of cycles is the smallest. Compare case J  with case L. L  has more communication channels than case 

J. Nonetheless process 3 in L  spends less time waiting than process 3 in J, which implies that the memory 

traffic of L  is lighter than that of J  due to synchronization between process 1 and process 3. Compare K  with 

L. Their topologies are the same, but the process execution order differs. As a result, the completion times 

are different. Similar conclusions can be drawn for topologies M  and N.

There are several broad conclusions that can be drawn from these results. First, apparently small 

changes in the functional topology can actually have dramatic effects on execution time. Secondly, the 

breakdown of overall execution time is important to examine for these types of applications in order to 

better understand how communication bottlenecks play a role in each topology. Finally, METROPOLIS was 

able to perform efficient functional design space exploration with ease and with only minor changes to 

the functional and mapping models. Fourteen topologies were able to be explored with very few changes 

to the architectural model. In fact, only the top level architectural netlist needs to be changed since the 

the structures are very regular and modular. This modification process could be automated and even more 

topologies explored if the 4 MicroBlaze restriction was relaxed.

■ p ro c ess  ■  Waiting O
(Top)

Communication II Computation
(Center)________________(Bottom)

3 filter processes
Synchronization Effects

Execution 
er Effects

2 filter processes
Best
Performance£

§  70000 
o
°  60000 a>
>• 50000

O 40000

“  30000

20000

A B C D E F G  H I J K L M N  
Functional Topology Candidates

Figure 5.8: M e t r o p o l is  H.264 Simulation Results for All Candidate Topologies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

152

Optimal FIFO Size

In the second set of experiments, the effect of FIFO length between filter processes was examined. 

Figure 5.9 shows execution cycle counts of three topologies: C, F  and I  when the length of a FIFO between 

filter processes changes (N in Figure 5.6). The results show the optimal length in terms of achieving mini­

mum cycle counts. Changing the length of a FIFO does not have an effect on the total cycle count, but rather 

on the cycle counts of individual processes.

Let process P be a producer process and process Q be a consumer process, and FIFO F  connect P 

to Q. As it turns out, when process P takes more time than process Q for its computation and communication 

time (with a source process), the length of F  does not matter. Meanwhile, when process P takes less time 

than process Q, the length of F  has an effect on waiting time of P, not on Q. However, the total cycle counts 

do not change. Therefore, this illustrates that FIFO length exploration is less important in terms of the total 

amount of execution clock cycle counts.

80000

-  70000 c
O 60000 
O
a> 50000

>* 40000

g  30000

s 20000 o
X  10000 
Ul

0

Optimal Length

I
No FIFO Length Effect

aft—

■ Waiting □ Communication □  Computation
(Top) (Center) (Bottom)

■■■■■■■

L

e -  CM ^  lO  ID <0 CO CM <D r -  CM CO e -  CM ^  in <o CO CO ■*- CM '•T m  ID CO CO * -  cm •'J- m co co coT_ T_ T_ * -

PID2 PID1 PID2 PID1 PID2
I

PID3 Process ID

H.264 Functional Topology Candidates

Figure 5.9: METROPOLIS H.264 Simulation Results for Various FIFO Sizes

Table 5.2 breaks down the performance of all the topologies further. Total execution time in clock 

cycle counts (second column), the optimal FIFO length (third column), and topology decomposition (fourth, 

fifth, and sixth columns) are shown. Optimal FIFO length is the smallest length which maintains the lowest 

clock cycle count. Resource cost is given as program binary code size below the table. The 4th, 5th and 6th 

columns then can be interpreted as how much memory is consumed for program memory on each process. 

PQ is the result given by combining P and Q computational blocks on the same architectural resource. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

153

the case where FIFO length does not make any difference for the counts, the optimal length is set to 1. 

Table 5.2: H.264 Performance and Cost Results for All Topologies
Topology Counts Length Procl Proc2 Proc3
A 94021 1 PQ - -
B 50188 1 PQ PQ -
C 58839 5 P Q -
D 54505 1 PQ PQ -
E 60124 1 PQ PQ -
F 67981 1 PQ Q -
G 76182 6 PQ p -
H 43932 1 p Q Q
I 60215 5 p Q p
J 52031 3 p Q PQ
K 52971 1 p Q PQ
L 50780 1 p Q PQ
M 58941 6 p Q PQ
N 61190 6 p Q PQ
Binary Data Size PQ: 47.9KB; P: 47.0KB; Q: 45.9KB

This simulation demonstrates that users can make a decision regarding the optimal functional 

model based on parameters related to performance and costs such as total execution cycle counts (work­

load balance), communication overhead, memory traffic, FIFO length, shared memory size, the number of 

processors, program code size, context switching overhead, register, cache, dedicated hardware logic size, 

and so forth. Again, METROPOLIS provides a easy-to-use framework for this type of functional exploration 

thanks in no small part to the modular and flexible architecture construction.

Simulation Accuracy

All of the previous results are meaningless unless M e t r o p o l i s  simulation accurately correlates 

to the actual implementation. Figure 5.10 illustrates how closely METROPOLIS’ simulation compares to 

experimental results. Six of the more interesting topologies were selected. Each design was implemented on 

a Xilinx ML310 design board and the execution time was measured. Shown in the figure are the percentage 

differences between simulation and implementation. The maximum difference between implementation 

and simulation is 7 3 % .  This is a high correlation while maintaining a high level of abstraction in the 

M e t r o p o l i s  models. In addition, it confirms that H  has the lowest cycle count of any design and 

demonstrates that making an absolute design decision based on METROPOLIS simulation would have been 

the correct choice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

154

Simulation/Implementation Accuracy
70000 -

o
o
_Q)
O>.
o

60000

50000

40000

30000

20000

10000

3.64%

I I Metropolis Simulation 
I I Xilinx Experimental

0.36%

1.30%
7.33% 3.26%

4.99%

C D H L

H.264 Functional Topology Candidates

Figure 5.10: M etro po lis  H.264 Accuracy Versus FPGA Implementation

5.3 Architecture Platform Refinement Example: SPI5 Packet Processing

The previous two case studies illustrated aspects of characterization and architecture service mod­

eling modularity. These examples demonstrated the benefits of the modeling style and characterization 

presented in previous chapters. Efficiency and accuracy were demonstrated while maintaining modularity. 

This section will discuss refinement verification’s role in the design process. This work is an expansion of 

work produced in [Dou04], Abstraction possibilities will be demonstrated here with an architectural design 

topology that goes through a number of transformations while still being shown to be a valid refinement to 

the initial specification.

The goal of this exercise was to analyze the architecture of an interface unit for a very high band­

width Optical Internetworking Forum (OIF) standard, e.g., System Packet Interface Level-4 (SPI-4), Level-5 

(SPI-5) [K. 01] with the following requirements:

•  The interface must provide the maximum bandwidth as required by the specification.

• There can be no loss of data with minimum backpressure; backpressure reduces upstream traffic flow. 

The architecture can generate backpressure only if the downstream system requires it.

•  Determine optimally sized standard embedded memory elements. Optimal is defined as the lower 

bound size while functioning with no packet loss.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

155

•  The interface must support multiple input channels.

•  The insertion of idles cycles (no activity) when packets are of different size must be minimized.

For this work a simple SPI-5 data generator model was designed that generates packet data every 

clock cycle for given number of channels. Two types of parameters are considered: architecture and appli­

cation. Architecture parameters help to determine the microarchitecture parameters for various application 

parameters. One should choose a set of architecture parameters that match all application parameters for a 

given specification to ease the mapping process. Custom architecture services were created which could be 

parameterized to do this investigation. Additionally the architecture services were composed in a variety of 

ways to create a set of platforms (each at a different abstraction level) as will be described.

5.3.1 Application Parameters

Application parameters are defined as part of the functional specification. Given the specification 

they were the aspects we felt captured the system level decisions that needed to be made.

•  Number of Channels (Np) - Number of PHY units. A PHY unit is a physical layer device that 

converts the serial optical signal to an electrical signal.

•  Data Rate/Channel (Bp) - What configuration of PHY units can be used. The electrical signals from 

the PHY units are typically in a byte or multiples of bytes format.

The application parameters define what different types of PHY units the design could interface 

with. This is a tradeoff between flexibility and clock frequency. A smaller Np will deliver data at a higher 

clock frequency, Bp, since the bandwidth must be maximized.

5.3.2 Architecture Parameters

The objective of architecture service design and development was to devise a robust architecture 

that will allow the application design to interface with different types of systems. To evaluate the various 

architectures, following two parameters were defined:

•  Number of channels/bus (Np) - Number of channels that can simultaneously deliver data at the same 

time.

•  Bytes of data/bus (Bp) - Number of bytes delivered from each channel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

156

In the simplest case Np = Ng and Bp = Bg, i.e., the system is configured to accept and deliver the 

data when all channels are equivalent. However, each channel can deliver data at a different rate. The only 

characteristic known is that the aggregate data from all the channels will be no more than 40 Gb/sec.

This work supports up to 16 channels. For 16 channels, each channel must be 2.5 Gb/sec, to get 

an aggregate of 40 Gb/sec rate (2.5*16). Alternatively, 4 channels can each be 10 Gb/sec. This is aggregate 

data rate is a function of the SPI-5 specification.

The various parameters also control the internal bus width and internal clock frequency. For

example:

•  Bus Width (Biv) = Ng * Bg - The bus width is the number of channels times the number of bytes of 

data for each channel.

•  Np*Bp*Cgys/Bw —> (Ideally small as possible); where Csys, is the system clock frequency. This 

indicates the backpressure needed. Values greater than 1 indicate the bus capacity has been exceeded.

An interface unit that can interact with the PHY units and deliver data to the downstream modules 

can now be designed. However, the effect of the decisions at this level will impact the operation and storage 

requirements of the design.

Example: Consider Ng = 8 (channels per bus) and Bg = 4 (bytes per channel), then Biy = 32 

(Bytes). Then when Bp = 4 (data rate per channel) and Np = 16 (number of channels), the data sequence is 

produced as shown in Table 5.3. For the first clock cycle, the 1st byte from the selected channels appears on 

the bus. In the second clock cycle, the 1st byte from the remaining channels is delivered.

Data Transfer Byte (Bp = 4)
1st SOP Byte 2nd 3rd 4th EOP Byte

Channels using Bus (Ng = 8 and Np = 16)
0-7 8-F 0-7 8-F 0-7 8-F 0-7 8-F

Clock CycleonU

C =  1 C = 2 C = 3 C = 4 C = 5 C = 6 C = 7

Table 5.3: Example of SPI-5 Data Generation Using the Architecture and Application Parameters

For this system configuration, it will take 8 clock cycles to send 256 bytes of data over an 8 

channel wide bus (16 total channels) with packets of 4 data units each. This is a simplified scenario. A more 

constrained implementation has been described in [San03].

The purpose o f  this study was to use METROPOLIS to quickly evaluate the impact o f  various 

parameters on the entire design while minimizing the verification effort. The data generator described

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

157

allows the system conditions to be quickly changed to test how modifications to the architecture topology 

affect the overall system performance.

5.3.3 Refinement Based Design Flow

The goal of the design flow for this case study was to (1) observe if METROPOLIS could effectively 

aid in the process of microarchitecture design and verification as compared to other approaches and (2) 

derive the architecture and application parameters described in Sections 5.3.1 and 5.3.2. The proposed 

design flow will simplify the microarchitecture development and help to determine which portions of the 

design need to be further refined with formal analysis methods.

The notion of successive platform refinement was essential in this flow. Each METROPOLIS model 

represented a specific platform instance. Each subsequent platform,+i, kept a reusable abstract specification 

with correct behavior and equally importantly, each successive platform held the refinement relationship 

required with its parent platform. Theoretically any microarchitecture is a candidate for refinement. In this 

case, the presence of observable communication involving computation elements was required.

Platform abstraction was driven by the separation of concerns as mentioned. Beginning with the 

initial specification each subsequent platform would address previous platform constraints and application 

and architecture parameters. At each step, refinement verification was performed. If the refinement relation­

ship held, a set of data points concerning various metrics relevant to the design was collected. Figure 5.11 

illustrates the refinement based design flow.

This methodology produced several different platforms, which exposed different aspects of the 

application to mapping possibilities. These platforms are referred to sequentially; they drove the microarchi­

tecture design by revealing designs that did not meet the constraints implied by the application parameters. 

Simulation performance analysis drove refinement to the next platform.

5.3.4 Platform Development

The goal of platform development is to address and transform some of constraints of the previous 

platform and develop the optimal architecture and application parameters outlined previously. This creates a 

hierarchy of platforms with their corresponding successors and parents. Platforms naturally address changes 

to computation, communication, or coordination structure. This was natural for this application but can be 

more ambiguous for other applications. M etro po lis  semantics make this relatively easy. Figure 5.12 is 

an illustration of all the proposed platforms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

158

Abstract Model (Platform i) Refined Model (Platform i+1)

Data
Source

Racket
Processo

Packet
Processo

Buffers

CFA Generator

Surface Refinement 
Check (Interface Based) Refinement Verification Backend

Key 

I Exposed Port

Component
Boundary

Pass or Fail
1. Define component boundaries
2. Collect exposed ports
3. Correlate ports between models
4. Surface refinement check on each pair of ports
5. If all pairs pass, entire system passes, else fail

Figure 5.11: Successive Platform Refinement Methodology

Platform 0

Platform 0 represents the minimally constrained functionality of the initial specification. This pro­

vides the initial platform in Figure 5.12. This is a buffered producer/consumer where there is a data source 

(producer), some internal storage (buffer) and a packet processor (consumer). There is communication (A, 

B) but no notion of what architectural form they take (i.e. bus, shared memory, etc). There is only the notion 

of direction (read or write) and that A and B can only be accessed by one element per unit time. The initial 

system presents what is we term “constraint 0”:

Constraint 0 - Only complete packets can be delivered to the packet processors. Partial packets 

have to remain in the internal storage or dropped based on other system requirements.

Inherent constraints (1-3) are reflected by the application topology (where DS = Data Source; IS 

= Internal Storage; PP = Packet Processor):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

159

I ISO I
Data

Source
Packet

ProcessoiISi
Buffers

ISn

Platform 2.1
DS
DS Packet

ProcessoiDS
D& ISn

FC MC
Platform 2.2MCFC

Figure 5.12: Platform Development for SPI-5

•  MaxRateProduction(DS) <  MinRateConsumption(IS) (1)

•  MaxCapacity(IS) >  MaxProduction(DS) - MinConsumption(PP) at any instant t (2)

•  DataFormat(DS) = DataFormat(IS) = DataFormat(PP) (3)

Equations (1) and (2) ensure that this is a lossless communication mechanism while (3) captures 

the fact that these are primitive communication mechanisms in which data is merely transferred not trans­

formed. The next platform should look to transform some of these constraints. This transformation needs to 

occur to move the platform to a level which not only is closer to a real implementation but also one in which 

simulation performance results will be meaningful.

Data N Internal
Source A V Storage

A
T V

Packet
Processor

Platform 0

Data
Source

ISO

ISi i V
Packet

Processor

Platform 1

Data
A t

Source

1

Nfjso~l 
1/r ISi Ms

ISn
Packet

Processor

Buffers
Platform 2

Data
Source

risol

I ISn I
MUX LOGIC

Packet
Processor

Platform 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

160

Platform 1

The internal storage for each channel depends on the data rate of the channel. A simple imple­

mentation due to this constraint can be stated as a set of refined constraints on the internal storage.

Constraint 1 - Bp is an application parameter; hence the internal memory must allow storage 

space for each channel to be dynamically adjusted. Aggregate data rate of 40Gb/sec must be preserved. The 

number of divisions (N^) must equal the number of PHY units, i.e., = Np.

With the aggregate data rate and different data rate per PHY units, application parameters were 

combined as in Table 5.4.

Data Rate/Phy, B/> Number of Channels, Np
40 GB/Sec 1
10 GB/Sec 4
2.5 GB/Sec 16
1.25 GB/Sec 64
625 MB/Sec 256

Table 5.4: SPI-5 Application Parameter Interaction

M etro po lis  simulations indicated that for large number of channels the current bus architecture 

would not be sufficient. Therefore it was decided to restrict Np to 1,4 and 16.

As with the previous platform (platform 1) there are still constraints but now they generate a 

relationship between platforms. These constraints can be derived from the topology as before as shown in 

number (5) or from Metropolis semantics as shown in number (4).

• Coordination (Platform 1) >  Coordination (Platform 0) (4)

•  Services (Platform 1) = Services (Platform 0) (5)

The fact that number (5) requires that the platform have the same number of services coupled with 

number (4)’s observation of increased coordination, manifests itself as a change in to the IS service. Initially 

it was a SCSI service. It will now become a MCSI service with each component now becoming a segmented 

aspect of the internal storage. This relation indicates that platform 1 will require more explicit coordination 

with equal processes. This will restrict behaviors, which hold a refinement relationship.

Platform 2 and Platform 3

Analysis using the above set of constraints imposes strict timing based on the clock frequency. 

For a large memory this will be a difficult constraint to meet. The constraint of platform 1 needs to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

161

further refined or implemented differently. As the constraint based, successive refinement process proceeds, 

implementation related considerations dominate. The refined constraint can now be stated as:

Constraint 2 -The data rate and number of channel based internal storage should have pipelined

writes.

The implementation with this constraint leads to:

•  Using a mux-based logic organization as shown in platform 3. This scheme was not implemented due 

to lack of formal refinement relationship (as discovered by the refinement verification process).

•  Using an external buffer to intermediately store incoming packets (read transaction) and then pass 

them to the internal storage (write transaction), as shown in platform 2.

The coordination introduced in platform 1 manifests itself as control logic as shown platform 3. 

This makes the coordination explicit but does not ensure refinement due to the addition of a component 

whose behavior is outside of the specification. Communication refinement was needed and to revert to a 

previous communication refinement of the internal storage (IS) as in platform 2.

As Figure 5.12 shows, if communication (A) is actually refined into buffers as in platform 2 

then there is no need for platform 3. As hoped, this will prevent the continued growth of the coordination 

overhead introduced in platform 1 and the refinement of the IS into internal memory does not change the 

platform properties in platform 0. The design will now proceed from platform 2.

Platform 2.1

Subsequent M etro po lis  simulation analysis indicated that during peak times the read transac­

tions dominated the system. Therefore in progressing to the next platform a constraint should be developed 

which will improve on this situation:

Constraint 3 - The pipelined write transaction should be independent to the read transaction. 

Platform 2.1 recognizes that coordination must be added in order to manage buffers and for con­

straint 3 to be realized. This coordination will require two units of control introducing added coordination. 

This coordination will further constrain the behavior into the refinement relationship. Figure 5.12 shows 

this refinement became the two additional component objects added in order to provide buffer management. 

These are new components which are added to the buffer service. This transforms the buffer service from a 

MCSI service to a MCMI service.

At this point, few architecture parameters are changing, but the refinement is proceeding more 

closely to a final implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

162

Platform 2.2

The “final” constraint on the system was added to have independently operating PHY units. This 

is important because it was desirable to ensure that there were no assumptions built into the data generation 

and internal bus organization. The final constraint can be stated as:

Constraint 4 - Packet generation from various channels should be independent activities.

This refinement is performed on the data source and implements the application parameters, that

is:

•  Number of DS = N/> (6)

•  Size of DS = Bp (7)

Ultimately this is simply an addition of components to an already MCMI service. Platform 2.2 

shows a final refinement of the microarchitecture for this investigation. This computation refinement requires 

a coordination refinement in order to process this data properly. Therefore additional METROPOLIS quantity 

managers will be needed as well.

Notice that the DS block now is made up of multiple blocks. This requires a similar transformation 

for the FIFO Control (FC) and the memory control (MC). This final refinement will be by design a refinement 

of all previous platforms before it and was verified as such by the refinement verification process used 

throughout this section.

5.3.5 M e t r o p o l is  Models

For the purposes of simplicity, a one-to-one mapping between functional processes and architec­

tural services was carried out. This mapping required the construction of architectural model for each of the 

platforms presented. METROPOLIS architecture service models were derived to represent platforms 2, 2.1 

and 2.2. Figure 5.13 shows a diagram of the “final” model, platform 2.2. M etro po lis  mapping processes 

are provided for the DS, FC, MC, and the FIFO scheduler (FS) processes in the functional model. Parame­

terized, custom made architecture service were created to provide computation services (DS, FC, MC, FS) 

in platform 2.2. Also M etro po lis  media reflect memory elements (buffers). Also provided in the figure 

are the quantity managers for each of the services. This illustrates how the scheduled and scheduling netlist 

are partitioned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

163

Scheduled Netlist for Platform 2.2

DS FC MC FS
y  Mapping 

Process
Mapping
Process

Mapping
Process

Data
Source

Memory \  
Control j

Fifo
Scheduler

Comm
Mpdia

Fifo
Control

Comm y 
Media / Buffers

SM SM

MC Quantity 
Manager

FS Quantity 
Manager

FC Quantity 
Manager

DS Quantity 
Manager

Scheduling Netlist for Platform 2.2 Char
Database

Global
Time

Figure 5.13: M etro po lis  Architecture Model for Platform 2.2

5.3.6 Results

After the creation of a subsequent platform,+i, the second step to continue the development 

process was refinement verification. The procedure, in keeping with the successive platform refinement 

methodology, was concurrent with each subsequent platform development. The platform,+i is considered 

only if the answer to the refinement question, (Platform,+i, Platform,) was YES.

Refinement verification required the creation of a control flow automata (CFA) for both the ab­

stract and the refined model to capture the behaviors, B, of each model. The CFA creation can be done via 

a backend service in METROPOLIS that extracts this information automatically (Figure 5.11). This process 

was covered in detail in Chapter 4, Section 4.4.

A trace, a, is determined by the traversal the CFA. This represents a potential execution of the 

model. Once the set of traces, B, for each model is determined, the refinement verification stage is simply 

ensuring that the behavior of the refined model is a subset of the abstract behavior.

Refinement verification via the CFA creation process is, for each process, P, in the model, M :

1. Create a CFA with the Metropolis Backend for Platform,- (Ab) and Platform,+, (Ref).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

164

2. Identify a cycle in the CFA, this is a trace a.

3. Add, a, to the set of behaviors, B.

4. Continue until all cycles are identified. Do this for each CFA in the abstract and refined models.

5. Compare the behaviors Bref  to the abstract behavior Bat for the corresponding CFAs.

6. If Bref  C Bab return YES; Else return NO.

FIFO Scheduler Ab FIF0 Scheduler Ref

terminated()

True FalseTrue False

whatRoundf) whatRoundQ

Type &' 
IDone

Type & 
IDone.

IType & IDone ElseElse

'checked a ll\ whatRound<>
terminafedQ*

checked ailN"hatRound0 
terminafed() X ,

FalseFalse TrueTrue n4 4
CO. queryData()queryData()
■oe
3Otc

putPolicyOputPolicyQ
44
3Q.

Figure 5.14: Sample Control Flow Automata for Abstract and Refined FIFO Scheduler

Figure 5.14 shows the control flow automata for two particular architecture services in platform 

2.1 (abstract) and 2.2 (refined). FIFO scheduler is just one example of the 4 architecture service models 

shown in Figure 5.13. The circles are the control locations, Q. Control location 1 is the initial location, qo. 

The operations, Op, on each transition, — are specific function calls used in the model (denoted by “()”) or 

boolean predicates. The cycles in these CFAs represent possible execution traces of the model and are show 

in Table 5.5.

Naturally since these are cyclic graphs there must be some notion that each cycle may be subse­

quently followed by any other cycle in the set infinitely often. This work uses © to denote this. Therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

165

Trace FIFO Scheduler Traces (Function Calls)
T l Terminated()
T2 Terminated() wRnd()“
T3 Terminated() wRnd()“ wRnd()“
T4 Terminated() wRnd()“ Terminated()“ qData ()“
T4 cont. putPolicy() PRISQ®
Bref = {Tl, T3, T4} C B** = {Tl, T2, T3, T4) -> Refinement!

Table 5.5: Traces from FIFO Scheduler CFAs

the abstract FIFO scheduler behavior, B ^ , is {T l, T2, T3, T4}“ and the refinement behavior, Bref ,  is {Tl, 

T3, T4}“ . Notice that the FIFO scheduler trace has a function call, qData(), which also is denoted with a CD. 

This is due to the loop shown in the graph containing finitely many calls to this function. This demonstrates 

the nested use of 0). The creation of the CFA is automatic and the evaluation of the traces via graph traversal 

is automated as well as discussed in Chapter 4. This demonstrates refinement verification in the design flow 

prior to creating another platform and gathering data.

FIFO Occupancy in Platforms 2.1 (left) and 2.2 (right)

(A
©
>*

m

NB = 1 NB = 4 NB = 8 NB = 1 NB = 4 NB = 8 
Numbers of Channels/Bus (NB)

a Bp = 1
a Bp = 2
□ Bp = 3
■ Bp = 4

Figure 5.15: FIFO Occupancy Data for Platform 2.1 and 2.2

Figure 5.15 provides a sample of the data analysis possible in the design. This figure shows FIFO 

occupancy between subsequent platforms (2.1 on the left side and 2.2 on the right side) in combination with 

changes in both architecture (Ng) and application (Bp) parameters. The number of channels (x-axis) varies 

in increments of 1,4, or 8. Each channel size count was coupled with 4 data rate/channel values (1,2, 3,4). 

Notice that the FIFO occupancy (y-axis) in the refined model (2.2) is bounded by the worst case (highest 

occupancy) in the abstract model. The data in the refined model actually indicates that FIFO occupancy is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

166

unaffected by Bp and that for all 4 settings the occupancy is the same as Bp =  1 in the abstract model. This 

type of data analysis will drive the platform development in the future and demonstrates the usefulness of 

design exploration.

5.4 Communication Subsystem Refinement Example: FLEET Communica­

tion Structure

This section and final case study will demonstrate another refinement technique discussed previ­

ously, “depth” refinement. The purpose of the example presented here is to explore how various communi­

cation structures can be replaced in a design without changing the surrounding components. These changes 

are verified before the substitution using the techniques discussed in Chapter 4, Section 4.5. This substitu­

tion then becomes “correct-by-construction”. This differs from the example shown in Section 5.3 because 

the topologies of the architecture models in this section remain the same but the operations internally in 

the components are changed. This case study example is performed on a model of the FLEET architecture 

(described in Section 2.5). Specifically it is a manipulation of its communication structure where there exists 

a great deal of underspecification.

5.4.1 Communication Library

The first step in developing a refinement framework is the creation of library of communication 

services. These services which are created first in M e t r o p o l is  or SystemC are then transformed into LTS 

and have a corresponding architecture service interface. E  for each LTS system S corresponds to events in the 

architecture service model, Eg. Events have been described in the context of the METROPOLIS environment 

previously. The concept of event synchronization can exist as well in a SystemC model. This section will 

detail those architecture services in terms of their LTS representations. In all descriptions, the when an event 

is described as “emitted” it refers to the generation of a visible event, Eev-

•  Abstract Buffer (AB): An abstract buffer is defined to buffer data. It contains states that are repre­

sentative of an nplace buffer: Q = {empty, not-empty, full). Qa = empty, and upon receiving a write 

event, it will transition to notjempty while emitting an event to signal a successful write. Similarly a 

transition occurs from notjempty to full. Read events from a consumer cause transitions to empty and 

not-empty states. This process also emits an event signaling a successful read. Events are not emitted 

when in the full or empty states for write and read request respectively. This buffer provides blocking 

semantics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

167

•  Copy Buffer (CB): This architecture service structure allows consumers to copy data out of the channel 

without actually removing it from the channel. This requires a copy event emitted from the consumer. 

A channel transitions from full or nonempty states to fulLcopy or not.empty.copy and emits an event 

back to consumer containing the data. In the copy states, the channel behavior is the same as the 

behavior at its respective not.empty and fu ll states.

•  Random Buffer (RB): The two previous architecture service structures assume that data organization 

is FIFO. This component transitions differently when there is an read event at Q = full. The LTS 

transitions to Q = read.choose, where it consumes an event from an external source (i.e. random 

number generator), and transitions Q = readl or read2.

Figures 5.16(a) and 5.16(b) show both the LTS for CB and RB. In each of the figures the abstract 

buffer (AB) is shown on the left hand side.

•  Delay Buffer (DB): This service models the delay of the read and write transitions in a buffer. This 

is helpful in simplifying the cost model for this service as compared to the other buffers. Instead

Refinement

AbstractRefinement
emptyAbstract

ion*! empty

empty not
empty

not
empty
copy

write readl 1

1 i7  not y  pilling Rditii 
Vempty) 1

read3 readl*

not
emptyT

not
empty2

read Y 
choose I

Gluing Relat̂ pn

(a) Copy Buffer (CB) Communication Service (b) Random Buffer (RB) Communication Service

Figure 5.16: LTS Communication Example #1 for FLEET

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

168

of transitioning to Q = notjempty when the service channel receives a write event or Q = empty, it 

will transit to Q -  writing 1, and only transition to Q = notjempty when it receives an endjwrite event 

(potentially modeled by a timer). This occurs symmetrically for read events as well.

•  Non-Blocking Buffer (NB): AB is a blocking buffer, whereas the NB service allows a non-blocking 

read or write. When Q = empty, a read event causes a transition to Q = nb.empty, and it emits 

read .Done event to the consumer without data. It will take a retr transition back to Q = empty. 

Similarly, the service channel emits a write-done event when a write event is received and Q = full 

and transitions to Q = nbffull.

Figures 5.17(a) and 5.17(b) show both the LTS for DB and NB. In each of the figures AB is shown 

on the left hand side.

empty

write end read <

Refin e m eji t
I 
l

Gluing .
_ . . Relation.(■'

Abstract , i
/read \  x-' | ........... !.. ,

> iGluing I / '  \  \
jem pty) ^Relatjonj * writingl! (readtngl!

i — .Gluing | >  V
(write read) I Relation, \
\  j 1 \end_write

IGluing [
. .Relation |

i ,
■ .. . | I /write end_read
Iwnte read] lG|uing v. I

| Relation

i ^1 I \ wnting2!

Refinement

(Gluing
I — •.Relation] \end_write read

Gluing
Relationj

Abstract | \  empty

Gluing
Relationempty empty

'writeread

not
empty not

empty

Gluing
RelationI write read] write read

full full

.write Gluing
Relation retfw write

Gluing V 
Relation

nb
full

(a) Delay Buffer (DB) Communication Service (b) Non-Blocking Buffer (NB) Communica­

tion Service

Figure 5.17: LTS Communication Example #2 for FLEET

• Larger Buffer (LB): Currently the architectural service buffers created have an implied capacity of 2. 

States notjempty and full can be viewed as having 1 and 2 items respectively. It may be advantageous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

169

to have other “not.empty” states. For example two states (or more) such as not.empty! and notjempty2 

can be introduced. When Qq = empty and as write events occur, the LTS proceeds through these states 

to full. This path can not proceed back “up” the LTS since this will lead to violations of various

a read event occurs in Q = not.empty2. This has limited functionality since a return to empty is not 

possible from arbitrarily any state along this alternate path. While this is a limitation, it does allow 

sizing of buffers.

•  Drain Buffer (DrB): This buffer service models the ability of a buffer to instantly fill itself or drain 

itself. When Q = empty writes can transition as expected to Q = notjempty followed by Q = full. 

Alternately when Q = empty the LTS can transition to an intermediate delay state, d2, which transitions 

immediately to Q -full. This is true of read events as well where Q = full proceeds to notjempty 

followed by empty as normal. The drain operation proceeds from Q - fu l l  to d l and finally to empty.

LB and DrB are shown in Figures 5.18(a) and 5.18(b). Note that Figure 5.18(b) is shown with a 

modified AB. DrB is not related to the native AB buffer through refinement.

refinement rules (see Section 4.5.1, lack of T-divergence). Therefore there is an alternate path when

Abstract Refinement
Abstract Refinement

empty [Gluing | 
Relation

empty
empty

writeI . readj \read
I Gluing • p __
.' Relation.|.....
I Gluing Relation! n®£ *  ....

not p  
empty

not v» 
empty 2,*

Relation [Write.Iwrite3 empty

f  not '* 
I empty 3;

■ not * 
tempty 4,I Gluing" 

, Relation

Gluing
Relation read3

Gluing
L Relation |__

(a) Larger Buffer (LB) Communication Service (b) Drain Buffer (DrB) Communication Service

Figure 5.18: LTS Communication Example #3 for FLEET

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

170

5.4.2 Verification Process

With the architecture communication service library complete, one must identify where there are 

opportunities to introduce refinement into the system. The topology of the system will not change but rather 

the components in the topology. This requires that the interfaces remain the same. Figure 5.19 highlights in 

bold where these opportunities exist in the FLEET architecture.

outbox buffers

 ~ Qrr
= - C H > -
OutBoxes

ship

outputs ■ inputsfetch ship

instruction
queues

ship

switch fabric

• : destinat onssources ; I

source queues routers destination queues

Figure 5.19: FLEET System Architecture Service Refinement Opportunities

Since the FLEET architecture is largely underspecified, there exists freedom in how to implement 

its communication structures. Figure 5.19 identifies the locations in FLEET where there exists the freedom 

to change the communication. Specifically these locations and classifications are: the Fetch SHIP , the 

OutBoxes , and the output of the SHIP where there are single-writer / single-reader structures. The first 

classification, the Fetch SHIP, acts as a producer that produces instructions to the instruction communication 

mechanisms and the OutBoxes consume those instructions. The second classification, the Switch Fabric, 

represents a multiple-writer/single-reader structure. This thesis’ goal is to explore different ways to replace 

the buffers between ships, outboxes, and switch fabric. The communication service libraries developed will 

be used. What must be done now is demonstrate that the modified buffers are still refinement of the original.

The refinement process for verifying architecture communication service refinement for FLEET 

is that which was described in Chapter 4. Using the steps outlined in Section 4.5.1, it was formally verified 

that each communication services in Figures 5.16(a), 5.16(b), 5.17(a), 5.17(b), and 5.18(a) are refinements 

of service AB given the gluing relations illustrated in the figures by the arrows from each service model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

171

to AB. The service in Figure 5.18(b) is a refinement of a slightly modified AB service. This process is 

a verification that the communication services are a correct refinement of the abstract service in terms of 

control flow not data, since LTS does not infer any information on data of the system.

With the library verified, an LTS description of the entire FLEET system was created consisting 

of components from several smaller LTSs including the communication library just described. The FLEET 

system was broken into two parts for more modular and faster refinement verification (component based 

refinement allows for the reduction of overall transitions and states crucial in the running time of the algo­

rithm). The chosen division of the entire fleet system was:

1. The individual SHIPs with their input and output communication services (Figure 5.20(a)). A 

SHIP is an LTS service component composed of Q = {consumer, producer}. It will transition from 

Q = consume to Q = produce once it receives the readudone event from the communication service 

LTS. It will then transition from produce to consume once it receives a writeudone event from the 

communication service. These components are illustrated within the dotted line of the figure. This 

is the SHIP itself. Also within this space is the SHIP specific computation LTS which varies from 

model to model. The communication mechanisms at the producer interface and consumer interface of 

the SHIP each buffer the output and input data for the remaining SHIPs. These components actually 

represent aspects of the switch fabric. They are connected on the other interface of a producer and a 

consumer respectively, (integrated in the InBox and OutBox services to be described).

2. The Fetch SHIP with all the InBoxes and OutBoxes for additional SHIPs (Figure 5.20(b)). This 

part of the FLEET system consists of N  InBoxes and OutBoxes (one for each SHIP input and output 

in the system), a instruction communication service for each InBox (a buffer service), and one Fetch 

SHIP. A InBox/OutBox combination (IOC) is enclosed in dotted lines in the figure and consists of two 

consumers and one producer LTS. Each IOC will consume an instruction from the instruction com­

munication service (the buffer), and then according to the instruction, it consumes from its SHIP’S 

output communication service (source of a MOV) producing data at one of the SHIP input com­

munication services (destination of a MOV). Because LTS have no notion of data, and are only event 

based, it is not specified which SHIP the IOC moves data from and to. Therefore a choice LTS models 

the decision of moving from a particular SHIP output communication service to another SHIP input 

communication service. This choice LTS will model the information contained in a MOV instruc­

tion. The Fetch SHIP consists of N  producer LTSs (one for each IOC) and one consumer LTS. The 

consumer LTS will consume instructions from the memory communication service and, depending 

on the instruction, decide which producer should receive the data and produce data to its instruction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

172

communication service.

In order to illustrate more clearly how the SHIP, Fetch SHIP, and IOCs are connected, numbers are 

provided in Figure 5.20. To connect the the systems together to form the entire FLEET model, the numbered 

components should be viewed as corresponding between the two images. Also in the figure, the buffers are 

labeled also with the initials of the components which can be used during the refinement process and still 

maintain a behavior within the specification.

Note that SynCo syntax defines when an LTS can take a transition in its .sync files. This is the 

point at which one can define that a transition is enabled when certain LTS are in certain states. Therefore, 

in the situations in which the system has to decide which transitions to take or which LTS’s transitions to 

enable, a separate component was used that generates information on what choice the should system make.

AB, LB. DrB, DB. CB
S e ^ c e ^  H  Buffer Service Shipt§ ^ |~Buffer Service <g> £> Settee'

1 . “ “ AB, LB, OrB, NB. DB. RB 2.

Function ......Sanrtca of Shin a«rvtc«

•  • •
Duplicated for N 

SHIPs in the 
system

•  • •

Config. 1

Memory
Service

(a) Generic SHIP Service (b) FETCH SHIP Service

Figure 5.20: LTS for Entire FLEET System Level Service Models

LTS composition allowed the creation small systems initially. Specifically a producer, AB, and 

consumer services were created as LTS objects. The producer LTS service will produce as much as the 

buffer allows it to, the consumer service will consume as much as the buffer allows. The buffer LTS service 

begins as AB and will be substituted accordingly with those library services defined earlier in the chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

173

This substitution is allowed as it was verified that all refined buffer services were refinements as defined 

previously. Copy buffer, delay buffer, non-blocking buffer and random buffer can replace AB. However, the 

larger buffer (LB) was a successful refinement of a slightly modified AB. When all services were composed, 

this small FLEET system was shown to be a refinement (by definition the larger composed FLEET parts will 

also be refinements). Compositional refinement verification additionally proves that one can replace AB 

with any of the other communication services and maintain the refinement conditions. Table 5.6 contains a 

summary of the number of states and transitions in each system. The product value given is the upper bound 

for the total number of states existing in the system. Composition of LTS is defined in such a way that the 

resultant state count is considerably less than the product. The running time of SynCo is advertised as 0|Si?| 

where |Sf?| = \Qr\ + |7j?|. Qr is the number of refined states and Tr  is the number of transitions in the refined 

system. The refined models have at most 30 states in the fetch SHIP and as few as 13 in the the delay buffer. 

This number is approximately double that of the abstract system but the number is still much lower than the 

product values. The transitions in the refined models vary between 16 and and 44. Overall these number are 

extremely manageable by a system with a linear run time.

Abstn
States

ict
Transitions

Reluu
States

:d
Transitions

Sum Product Sum Product
Fetch SHIP 19 648 21 30 22500 43
SHIP 16 144 18 28 8400 44
Random 8 12 11 14 108 19
Copy 8 12 11 14 120 22
Delayed 7 12 10 13 63 16
Non-Blocking 8 12 13 15 160 21

Table 5.6: FLEET LTS States and Transitions

This example has illustrated that by creating very small individual LTS models (buffers, producers, 

consumers) of a much larger system (FLEET) an entire system can be verified. Abstract and refined models 

can then be interchanged freely once various state correspondences (gluing) relations have been made. The 

size of these systems are quite manageable and are tied to system level services by capturing the event 

behavior of the system level models within the individual components themselves. This process is part of a 

design flow which would follow the steps shown in Algorithm 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

174

Chapter 6

Conclusions and Contributions

“A conclusion is the place where you got tired thinking.” - Martin Henry Fischer

T his thesis began with the proposition that ESL adoption was important for the EDA commu­

nity’s growth and for the continued viability of embedded electronic system design. ESL’s transition into 

mainstream adoption would require that the design of system level architecture services be modular and 

abstract while maintaining accuracy and efficiency. The “methodology gap” had to be crossed. This set of 

requirements lead to the abandonment of a naive design flow and to the adoption of a proposed design flow 

which encompasses the following concepts:

•  The introduction of “architecture services” as a means to implement behavior captured by a functional 

description. Services provide interfaces which can be used to implement functionality. Additionally 

services have costs associated with their usage.

•  Transaction level, preemptable architecture services of parameterizable programmable platforms. 

These specifically included M e t r o p o l is  models of Xilinx’s Virtex II architecture and the FLEET 

architecture. This construction allows a large design space exploration process with only one set of 

library services.

•  Automatic extraction of programmable system descriptions for synthesis. An architecture structure 

extraction process creates the topology as a Microprocessor Hardware Specification (MHS) file for 

Xilinx tool flows directly. This automation removes error prone manual techniques.

•  Characterization flow for programmable platforms to be used during system simulation. This charac­

terization is captured in a METROPOLIS object located in the scheduling netlist which allows for zero

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

175

overhead, run-time annotation of events. This process allows for incremental addition of models as 

well as being completely scalable and portable.

•  Four refinement techniques (Vertical, Horizontal, Surface, Depth) based on three refinement verifica­

tion concepts (Event Based, Interface Based, Compositional Component Based) were illustrated for 

unique refinement activities needed during the design space exploration process.

The contributions of this thesis were summarized in Table 1.6 in Chapter 1. The primary contri­

bution is the way in which programmable tool flows and devices were leveraged to explore a large design 

space more accurately then previous approaches while using formal refinement techniques to proceed to­

ward implementations. While this flow can be extended to static architecture platforms, its strengths are 

severely hindered by doing so.

Chapter 5 brought these techniques together with a set of four case studies (MJPEG encoding, 

H.264 Deblocking Filter, SPI-5 packet processing, and FLEET communication subsystems) which demon­

strated the viability of various aspects of the proposed design flow. The summary of results could best be 

stated by saying the property of design fidelity was maintained in all case studies and the infrastructure and 

design techniques to ensure this fidelity did not reduce the efficiency of the design as compared to more 

traditional methods.

This chapter will serve as a reflection on the successes and failures o f the work presented throughout this 

thesis as well as provide future directions upon which the work could be expanded on or improved.

6.0.3 Chapter Organization

This chapter is broken into two parts. The first part primarily summarizes the benefits (Section 

6.1) and disadvantages (Section 6.2) of the design flow proposed throughout throughout this thesis. The 

second part is a discussion of a future work (Section 6.3) in the areas of integrating all the techniques more 

closely, formalizing them so that stronger claims can be made regarding the design process, and finally areas 

for expansion.

6.1 Benefits

This section discusses three benefits in this thesis’ approach which were not expected a priori. 

For an overview of the obvious benefits, the reader is directed to the introduction of the method presented 

earlier in Section 1.4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

176

The first unexpected benefit was the power and usefulness of METROPOLIS events. For example, 

events could be captured easily to produce structures used in verifying the refinement of architecture ser­

vices. Since METROPOLIS uses events to signify both the start and end of an action, it is very convenient 

to observe both the termination of an action as well as the nesting of actions. For example beginjuncl, 

begin Junc2, endjunc2, beginjuncl is a trace demonstrating a nested function call. Communication both 

between services and within the service itself is explicitly scheduled using events and therefore, it became 

very easy to extract the both CFAs and LTS structures from event sequences in the models. Event schedul­

ing can be enforced as well to add determinism to the CFAs and LTSs. Additionally, events were a very 

efficient mechanism for the annotation of simulation performance and made the the characterization process 

described not only easy but almost “free” from a simulation overhead standpoint.

The second unexpected benefit was the scalability of the characterization process. The charac­

terization process presented was not only able to be almost fully parallelized in its creation but also it was 

agnostic to the system that the tools were a part of (Unix or Windows for example). This occurs since each 

permutation of a design instance is independent from the last. Secondly, the way in which the Xilinx tools 

are created, the design template has no notion of operating system or hardware platform. The description 

also allows itself to be updated to new IP instances and device targets with a few simple changes to instance 

version declarations which can be accomplished with a simple SED unix script command. In this way, the 

thousands of permutation instances created in this thesis can be updated for future tool releases or device 

revisions with a simple script run only once.

The third benefit was how easily the composition of architecture instances from collections of 

M e t r o p o l is  media was. Initially, it might have been assumed that M e t r o p o l is  processes were the 

natural object of choice for services. However, the proposed method of only using processes as mapping 

tasks for the functional model, and composing services (SCSI, MCSI, MCMI) from media worked extremely 

well. This was due to the fact that (1) media can communicate directly to each other (processes can not) and 

(2) media implement interfaces (which then are extended directly by ports).

6.2 Disadvantages

The disadvantages in this thesis grew from some of the issues related to the tools used to implement 

the design flow (i.e. METROPOLIS) more than being inherent in the actual flow. Many of those unique to 

M e t r o p o l is  will be addressed in M e t r o  II. For example, the confusing design process that resulted from 

M e t r o p o l is  quantity managers being overburdened with the tasks of both scheduling and annotation has 

been resolved in M e t r o  II. Additionally, the mapping effort was extremely high in METROPOLIS due to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

177

fact that specific event relations between functional and architectural models had to be specified manually. 

This process will be improved in the future. However there are two sets of disadvantages which will continue 

across design tools.

The first set of disadvantages is the lack of possible automation in the refinement verification flow. 

There are two very obvious places in which designer expertise is needed and automation is not easy (if at all 

possible). The first example is in the creation of the witness module required during “surface” refinement. 

This module is required by the interface based tools and requires that the designer be aware of the operation 

of both the abstract and refined models. The issue arises since the designer must “convert” all the private 

variables of the abstract reactive module to interface variables. This conversion can be non-trivial (it is much 

more than a syntactic change) and may require a great deal of designer effort and thought. For large designs 

the effort may quickly outweigh the benefits. This is one of the reasons a separate ELIF based KISS flow 

was provided. The second refinement automation difficulty is in the specification of refinement properties 

for “vertical” refinement (event based flow). Each property described will work for a family of refined 

architectures but will need to be recreated to reflect the components and interfaces in the event that other 

objects are used in other designs. It is also not clear how to rank the MacroProperties in terms of which 

require less effort to prove a-priori in relation to each other. This ranking will be required by any heuristic 

algorithm wishing the prove them in an efficient manner. It also needs to be clearly shown that a generated 

MacroProperty requires less effort than the sum of its implied MicroProperties to prove.

The second set of disadvantages is in the characterization flow. Recall that the database is com­

posed of three portions. Two of these, “execution time for processing sequential code” and “physical tim­

ing”, can be obtained by automation. For example instruction set simulators can obtain the former and the 

flow described in this work the latter. However, the third category, “transaction timing” is typically obtained 

by understanding the bus protocol of the architecture being created. In the case of this thesis, the CoreCon- 

nect bus numbers were added manually after a careful examination of the protocol. In the event that another 

bus or switch mechanism was used, as similar manual analysis would have to be performed.

6.3 Future Work

This section discusses future work in the areas of integration (making the process more cohesive 

and automatic), formalism (making the process more rigorous), and extensions (making the process more 

powerful). I fully expect to tackle some of these issues in future research projects and would expect future 

publications to spring from these areas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

178

63.1 Integration

An area particularly ripe for future work is in the integration of the techniques in the proposed 

design flow. As it currently stands there are large portions which are automated but this process is not com­

plete. The compositional component refinement flow is not even tied together with a set of rudimentary 

scripts much less a presented as an automatic solution. In order to do this, LTS (.fts file), gluing relations 

(.inv file), and synchronization (.sync file) generation would have to be automated. The first of these should 

be tied more closely with the model directly to ensure that it is correct-by-construction. This transformation 

could be done by transversing the models to collect system variables to represent system states and events 

as labels for transitions. The other two files could minimally be generated by reading from a system spec­

ification. This information could generate the syntax used for the tool being employed (in this thesis it is 

SynCo).

It would be ideal as well to populated the characterizer database used to increase accuracy with 

computation timing data directly taken from an instruction set simulator (ISS) after running a set of bench­

mark applications. Currently only a few applications have been profiled (H.264 and MJPEG). This set 

should be significantly expanded if this work is to be of future use. Additionally, the transaction timing in­

formation only includes a small set of bus transactions for the PLB and OPB. Again this should be expanded 

in the face of additional applications.

6.3.2 Formalism

As with any design flow, the more the process can be formalized the more it can be analyzed 

and automated. One area which I am interested in formalizing is the selection of which MacroProperties 

to verify. Within any given design there will be provided a set of MacroProperties which must be proven 

between an abstract model and its refined counterpart. Since MicroProperty implication can overlap in the 

top level MacroProperties and other lower level MacroProperties that they imply, the question that remains is 

what is the smallest set of top level MacroProperties that are required. This can be formulated as a covering 

problem similar to two level logic minimization. Minterms correspond to MicroProperties. Cubes are 

MacroProperties. Once the problem has been captured this could be provided to a heuristic PLA minimizer 

such as Espresso [Ric87].

Cost model specification for the services currently is static. This information comes primarily 

from the characterization process. It would be ideal to provide a more formal declarative specification 

mechanism on top of this. For example, bus transactions execution time is currently a function of (1/bus 

clock speed) * bus cycles. A declarative constraint such as execution time <  50ns would imply a number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

179

of bus cycles (given a clock speed) or a clock speed (given a cycle count). This constraint could be used 

to enforce a specific performance given the fact that the designer wishes to build that enforcement in the 

scheduling mechanism as opposed to the model itself. This may be of use when the component being 

characterized is very abstract (early in the design process perhaps) or if the component is part of a testbench 

which is only being used to simulate the environment and not actually targeted for synthesis.

Additionally, I am well aware that a great number of definitions used throughout this thesis could 

benefit from a more mathematical formalism to make them not only less ambiguous but also make them 

more accessible to the international community. This will be done as this thesis is carved up for publication 

in smaller journals. What is provided currently is worded at such a level to make the design flow concepts 

accessible to the widest possible audience.

6.3.3 Extensions

Finally, there are a number of natural extensions for this thesis which would make it more ap­

plicable to other design flows and scenarios. One such extension that I am interested in is the expression 

of MicroProperties and MacroProperties as assertions in a language such as SystemVerilog [Acc07]. The 

assertions would be created in such a way that if an assertion is generated it reveals the fact that a property 

has not been held. Assertion based verification could be a powerful way to introduce a more efficient event 

based verification scheme into the design flow.

Currently, this flow is also very heavily targeting FPGAs. It would be nice to extend this to 

FPAAs as well as ASIPs. This extension would require more library services to be built and augmenting the 

characterization flow to work with the tools used to program those devices.

Synthesis of the architectural services to traditional VHDL or Verilog IP would also be of interest. 

This transformation would involve beginning with small synthesizable constructs and building services from 

these. Aspects of this work have been started with researchers at UCLA as part of the Xpilot work [Jas06].

Finally, as with any design flow of this size, the most important extension that can be done is 

more and more testing. As more designs are created with this flow and compared to their implementations, 

the better the entire process will become. It is my hope that eventually modeling takes the place of rapid 

prototyping and EDA reaches the point at which modeling data is the primary contributor to the design 

exploration process. It is in the push to realize this goal that this thesis’ contribution can most clearly be 

seen.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

180

Bibliography

[Abh04] Abhijit Davare and Douglas Densmore and Vishal Shah and Haibo Zeng. A Simple Case Study 

in Metropolis. Technical Memorandum UCB/ERL M04/37, Univerity of California, Berkeley, 

CA 94720, September 2004.

[Abh07] Abhijit Davare and Douglas Densmore and Trevor Meyerowitz and Alessandro Pinto and Alberto 

Sangiovanni-Vincentelli and Guang Yang and Qi Zhu. A Next-Generation Design Framework for 

Platform-Based Design. In Design and Verification Conference (DV-CON’07), February 2007.

[Acc07] Accellera. System Verilog. World Wide Web, http://www.systemverilog.org, 2007.

[Ada04] Adam Donlin. Transaction Level Modeling: Flows and Use Models. In CODES+ISSS ’04: Pro­

ceedings o f the 2nd IEEE/ACM/1FIP International Conference on Hardware/Software Codesign 

and System Synthesis, pages 75-80, New York, NY, USA, 2004. ACM Press.

[AkoOl] Akos Ledeczi and Miklos Maroti and Arpad Bakay and Gabor Karsai and Jason Garrett and 

Charles Thomason and Greg Nordstrom and Jonathan Sprinkle and Peter Volgyesi. The Generic 

Modeling Environment. In IEEE Workshop on Intelligent Signal Processing, May 2001.

[Alb02] Alberto Sangiovanni-Vincentelli. Defining Platform-Based Design. EEDesign, February 2002.

[Alt04] Altera. Altera FGPAs. World Wide Web, http://www.altera.com, 2004.

[Ana04] Anadigm. Anadigm FPAAs. World Wide Web, http://www.anadigm.com, 2004.

[AndOO] Andre DeHon. The Density Advantage of Configurable Computing. In IEEE Computer, April 

2000.

[And02] Andrew Mihal and Chidamber Kulkami and Matthew Moskewicz and Mel Tsai and Niraj Shah 

and Scott Weber and Yujia Jin and Kurt Keutzer and Christian Sauer and Kees Vissers and Sharad

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.systemverilog.org
http://www.altera.com
http://www.anadigm.com


www.manaraa.com

181

Malik. Developing Architectural Platforms: A Disciplined Approach. IEEE Design and Test, 

19(6):6—16, 2002.

[And03] Andrew S. Cassidy and JoAnn M. Paul and Donald E. Thomas. Layered, Multi-Threaded, High-

Level Performance Design. In DATE ’03: Proceedings o f the Conference on Design, Automation 

and Test in Europe, page 10954, Washington, DC, USA, 2003. IEEE Computer Society.

[And06] Andy D. Pimentel and Cagkan Erbas and Simon Polstra. A Systematic Approach to Exploring 

Embedded System Architectures at Multiple Abstraction Levels. IEEE Transactions on Comput­

ers, 55(2):99-l 12, 2006.

[ARM06] ARM. ARM Processor. World Wide Web, http://www.arm.com, 2006.

[Bea07] Beach Solution. EASI-Studio. World Wide Web, http://www.beachsolutions.com, 2007.

[Cha78] Charles A. R. Hoare. Communicating Sequential Processes. Communications o f the ACM, 

21(8):666-677, 1978.

[Cha03] Charles P. Poole Jr. and Frank J. Owens. Introduction to Nanotechnology. Wiley, 2003.

[CoF07] CoFluent Design. CoFluent Studio. World Wide Web, http://www.cofluentdesign.com, 2007.

[Cyp04] Cypress Microsystems. Cypress Microsystems Home Page. World Wide Web,

http://www.cypressmicro.com/corporate/corporate.htm, 2004.

[Dav87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science o f Computer

Programming, 8(3):231-274, June 1987.

[Dav95] David C. Luckham and James Vera. An Event-Based Architecture Definition Language. IEEE 

Transactions on Software Engineering, 21(9):717-734, 1995.

[Dav96] David Garlan. Style-based Refinement for Software Architecture. In Joint Proceedings o f the 

Second International Software Architecture Workshop (ISAW-2) and International Workshop on 

Multiple Perspectives in Software Development (Viewpoints ’96) on SIGSOFT ’96 workshops, 

pages 72-75, New York, NY, USA, 1996. ACM Press.

[Don04] Don Edenfeld and Andrew B. Kahng and Mike Rodgers and Yervant Zorian. 2003 Technology 

Roadmap for Semiconductors. IEEE Computer, 37(l):47-56, 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.arm.com
http://www.beachsolutions.com
http://www.cofluentdesign.com
http://www.cypressmicro.com/corporate/corporate.htm


www.manaraa.com

182

[Dou04] Douglas Densmore and Sanjay Rekhi and Alberto Sangiovanni-Vincentelli. Microarchitecture 

Development via Metropolis Successive Platform Refinement. In Design Automation and Test 

Europe (DATE), pages 346-351, February 2004.

[Dou06a] Doug Densmore and Adam Donlin and Alberto Sangiovanni-Vincentelli. FPGA Architecture 

Characterization for System Level Performance Analysis. In Design Automation and Test Europe 

(DATE), pages 734-739, March 2006.

[Dou06b] Douglas Densmore and Alberto Sangiovanni-Vincentelli and Adam Donlin. Leveraging Pro­

grammability in Electronic System Level Designs. XilinxXcell Journal, Q l(56):29-31,2006.

[Dou06c] Douglas Densmore and Roberto Passerone and Alberto Sangiovanni-Vincentelli. A Platform- 

Based Taxonomy for ESL Design. IEEE Design and Test o f Computers, 23(5):359-374, 2006.

[E. 00] E. A. de Kock and W. J. M. Smits and P. van der Wolf and J.-Y. Brunei and W. M. Kruijtzer and 

P. Lieverse and K. A. Vissers and G. Essink. YAPI: Application Modeling for Signal Processing 

Systems. In Proceedings o f the 37th conference on Design Automation (DAC), pages 402^105. 

ACM Press, 2000.

[Edm93] Edmund M. Clarke and Oma Grumberg and David E. Long. Verification Tools for Finite State 

Concurrent Systems. In J.W. de Bakker and W.-P. de Roever and G. Rozenberg, editor, A Decade 

o f Concurrency-Reflections and Perspectives, volume 803, pages 124—175, Noordwijkerhout, 

Netherlands, 1993. Springer-Verlag.

[Edw98] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A Framework for Comparing Models of 

Computation. IEEE Transactions on Computer Aided Design, 17(12), June 1998.

[E1192] Ellen M. Sentovich and Kanwar J. Singh and Luciano Lavagno and Cho Moon and Rajeev Mur- 

gai and Alexander Saldanha and Hamid Savoj and Paul R. Stephan and Robert K. Brayton and 

Alberto Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. Technical 

report, University of California, Berkeley, 1992.

[Fel02a] Felice Balarin and Luciano Lavagno and Claudio Passerone and Alberto L. Sangiovanni- 

Vincentelli and Marco Sgroi and Yosinori Watanabe. Modeling and Designing Heterogeneous 

Systems. In Concurrency and Hardware Design, Advances in Petri Nets, pages 228-273, Lon­

don, UK, 2002. Springer-Verlag.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

183

[Fel02b]

[Fel03]

[Fel05]

[Gar05a]

[Gar05b]

[Gar08]

[Gre91]

[IBM99]

[IBM03]

[IBM06]

[Ing04]

[Int99]

[Int04a]

Felice Balarin and Luciano Lavagno and Claudio Passerone and Alberto Sangiovanni-Vincentelli 

and Yosinori Watanabe and Guang Yang. Concurrent Execution Semantics and Sequential Sim­

ulation Algorithms for the Metropolis Meta-Model. In Proceedings o f the Tenth International 

Symposium on Hardware/Software Codesign, May 2002.

Felice Balarin and Harry Hsieh and Luciano Lavagno and Claudio Passerone and Alberto 

Sangiovanni-Vincentelli and Yoshinori Watanabe. Metropolis: An Integrated Environment for 

Electronic System Design. IEEE Computer, April 2003.

Felice Balarin and Roberto Passerone and Alessandro Pinto and Alberto L. Sangiovanni- 

Vincentelli. A Formal Approach to System Level Design: Metamodels and Unified Design 

Environments. In 3rd ACM and IEEE International Conference on Formal Methods and Models 

for Co-Design (MEMOCODE 2005), pages 155-163, July 2005.

Gartner Dataquest. User Wants and Needs Survey. Gartner Dataquest, 1992-2005.

Gary Smith and Daya Nadamuni and Laurie Balch and Nancy Wu. Report on Worldwide EDA 

Market Trends. Gartner Dataquest, December 2005.

Gartner DataQuest. Market Trends: ASIC and FPGA, Worldwide, 1Q05 Update edition, 2002- 

2008.

Gregory K. Wallace. The JPEG Still Picture Transmission Standard. Communications o f the 

ACM, pages 30-34, April 1991.

IBM. CoreConnect Bus Architecture, White Paper edition, 1999.

IBM. OPB Bus Functional Model Toolkit, 6th Edition, Version 3.5 edition, June 2003.

IBM Engineering and Technology Services. Time to Market. World Wide Web, http://www- 

03.ibm.com/technology/businessvalue/timetomarket.shtml, 2006.

Ingo Sander and Axel Jantsch. System Modeling and Transformational Design Refinement in 

ForSyDe. In IEEE Transactions on Computer-Aided Design, volume 23, January 2004.

International Technology Roadmap for Semiconductors. 1999 Update ITRS. http://www.itrs.net, 

1999.

Intel. Intel Flash M emory. W orld W ide Web, http://www.intel.com/design/flash, 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
http://www.itrs.net
http://www.intel.com/design/flash


www.manaraa.com

184

[Int04b]

[Int06a]

[Int06b]

[Iva06]

[Jan85]

[Jas06]

[Jay05]

[Jea03]

[Jie97]

[Jim05]

[JohOl]

International Technology Roadmap for Semiconductors. 2004 Update ITRS. http://www.itrs.net, 

2004.

Intel. Intel Pentium 4 Processor. World Wide Web,

http://www.intel.com/products/processor/pentium4, 2006.

Intel. Intel PXA270 Processor for Embedded Computing. World Wide Web, 

http://www.intel.com/design/embeddedpca/applicationsprocessors/302302.htm, 2006.

Ivan E. Sutherland. FLEET - A One-Instruction Computer. University o f California, Berkeley, 

2006.

Jan A. Bergstra and Jan Willem Klop. Algebra of Communicating Processes with Abstraction. 

Theory o f Computer Science, 37:77-121, 1985.

Jason Cong and Yiping Fan and Guoling Han and Wei Jiang and Zhiru Zhang. Platform-Based 

Behavior-Level and System-Level Synthesis. In International SOC Conference, pages 199-202, 

September 2006.

Jay Vleeschhouwer and Woojin Ho. The State of EDA; Just Slightly Up for the Year to Date. 

Technical and Design Software, The State o f the Industry, December 2005.

Jean-Pierre Talpin and Paul Le Guemic and Sandeep Kumar Shukla and Rajesh Gupta and Fred­

eric Doucet. Polychrony for Formal Refinement-Checking in a System-Level Design Methodol­

ogy. In ACSD ’03: Proceedings o f the Third International Conference on Application o f Con­

currency to System Design, pages 9-19, Washington, DC, USA, 2003. IEEE Computer Society.

Jie Gong and Daniel D. Gajski and Smita Bakshi. Model Refinement for Hardware-Software 

Codesign. ACM Transactions on Design Automation o f Electronic Systems, 2(1):22-41,1997.

Jim Kahle. The Cell Processor Architecture. In 38th Annual IEEE/ACM International Sympo­

sium on Microarchitecture (MICRO-38 2005) Keynote Address, 2005.

John Davis II, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu, Xiaojun Liu, Lukito 

Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel and Yuhong Xiong. Ptolemy II : Hetero­

geneous Concurrent Modeling and Design in Java. Technical Report UCB/ERL M01/12, EECS 

Department, University of California, Berkeley, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.itrs.net
http://www.intel.com/products/processor/pentium4
http://www.intel.com/design/embeddedpca/applicationsprocessors/302302.htm


www.manaraa.com

185

[Jos02] Joseph Buck and Soonhoi Ha and Edward A. Lee and David G. Messerschmitt. Ptolemy:

A Framework for Simulating and Prototyping Heterogeneous Systems. Readings in Hard­

ware/Software Co-Design, pages 527-543,2002.

[K. 01] K. Gass and R. Tuck. System Packet Interface Level 5. Optical Internetworking Forum Contri­

bution, OIF(2001.134), November 2001.

[KurOO] Kurt Keutzer and Sharad Malik and Richard Newton and Jan Rabaey and Alberto Sangiovanni- 

Vincentelli. System Level Design: Orthogonalization of Concerns and Platform-Based Design. 

In IEEE Transactions on Computer-Aided Design, volume 19, December 2000.

[Kur02] Kurt Kuetzer. Programmable Platforms Will Rule. EETimes, September 2002.

[Lau02] Laurie Balch. Ever Resilient, EDA is Growing. EE Times, July 2002.

[Mah05] Maher N. Mneimneh and Karem A. Sakallah. Principles of Sequential-Equivalence Verification. 

IEEE Design and Test, 22(3):248-257,2005.

[Mar95] Mark Moriconi and Xiaolei Qian and R. A. Riemenschneider. Correct Architecture Refinement. 

IEEE Transactions on Software Engineering, 21(4):356-3,1995.

[Mer06] Merriam-Webster Online Dictionary. Heterogeneous. World Wide Web, http://www.merriam- 

webster.com (1 Aug. 2003), 2006.

[Mer07] Merriam-Webster Online Dictionary. Accuracy. World Wide Web, http://www.merriam- 

webster.com (2 April. 2007), 2007.

[Mic03] Michael Horowitz and Anthony Joch and Faouzi Kossentini and Antti Hallapuro. H.264/AVC 

Baseline Profile Decoder Complexity Analysis. IEEE Transactions on Circuits and Systems for  

Video Technology, 13(7):704-716, 2003.

[Mir07] Mirabilis Design. Visual Sim. World Wide Web, http://www.mirabilisdesign.com, 2007.

[MLD07] MLDesign Technologies. MLDesigner. World Wide Web, http://www.mldesigner.com, 2007.

[MPE] MPEG4 AVC Reference Software JM92. http://www.m4if.org/index.php, MPEG Industry Fo­

rum.

[Nen96] Nenad Medvidovic and Peyman Oreizy and Jason E. Robbins and Richard N. Taylor. Using

Object-Oriented Typing to Support Architectural Design in the C2 Style. In SIGSOFT ’96:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.merriam-
http://www.merriam-
http://www.mirabilisdesign.com
http://www.mldesigner.com
http://www.m4if.org/index.php


www.manaraa.com

186

[Nir03]

[Nol05]

[Olg03a]

[Olg03b]

[Ope07]

[O’R07]

[PatOl]

[PauOla]

[PauOlb]

[Pav05]

[Peg06]

Proceedings o f the 4th ACM SIGSOFT symposium on Foundations o f Software Engineering, 

pages 24-32, New York, NY, USA, 1996. ACM Press.

Nir Naor and Yoav Lerman and Melanie Kessler. Forte/FL User Guide. Technical report, Intel 

Corporation, January 2003.

Nolan Goodnight and Rui Wang and Greg Humphreys. Computation on Programmable Graphics 

Hardware. IEEE Computer Graphics and Applications, 25(5): 12-15,2005.

Olga Kouchnarenko and Amaud Lanoix. Refinement and Verification of Synchronized 

Component-Based Systems. In FME 2003: Formal Methods, Lecture Notes in Computer Sci­

ence, volume 2805/2003, pages 341-358. Springer Berlin /  Heidelberg, 2003.

Olga Kouchnarenko and Amaud Lanoix. SynCo: a Refinement Analysis Tool for Synchronized 

Component-based Systems. In Margaria T., editor, FM ’03 Tool Exhibition Notes, pages 47-51, 

Pisa, Italy, September 2003.

Open SystemC Initiative. SystemC. World Wide Web, http://www.systemc.org, 2007.

O’Reilly. Perl.Com: The Source fo r  PERL. World Wide Web, http://www.perl.com, 2007.

Patrick Schaumont and Ingrid Verbauwhede and Majid Sarrafzadeh and Kurt Keutzer. A Quick 

Safari Through the Reconfigurable Jungle. In Design Automation Conference (DAC), June 2001.

Paul Lieverse and Pieter van der Wolf and Ed Deprettere. A Trace Transformation Technique for 

Communication Refinement. In CODES ’01: Proceedings o f the Ninth International Symposium 

on Hardware/Software Codesign, pages 134—139, New York, NY, USA, 2001. ACM Press.

Paul Lieverse and Pieter van der Wolf and Ed Deprettere and Kees Vissers. A Methodology for 

Architecture Exploration of Heterogeneous Signal Processing Systems. Journal o f VLSI Signal 

Processing for Signal, Image and Video Technology, 29(3): 197-207, November 2001. Special 

issue on SiPS’99.

Pavle Belanovic and Martin Holzer and Bastian Knerr and Markus Rupp. Automated Verification 

Pattern Refinement for Virtual Prototypes. In Conference o f Design o f Circuits and Integrated 

Systems, Lisbon, Portugal, November 2005.

Peggy Aycinena. ESL 2.0 = EDA 4.0. EDA Cafe, November 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.systemc.org
http://www.perl.com


www.manaraa.com

187

[Pro07]

[Raj98]

[Raj99]

[Raj03]

[Ran91]

[Rat98]

[Rav05]

[Ric87]

[Ric05]

[Sam06]

[San03]

[Shi06]

Prosilog. Nepsys. World Wide Web, http://www.prosilog.org, 2007.

Rajeev Alur and Thomas A. Henzinger and Freddy Y. C. Mang and Shaz Qadeer and Sriram 

K. Rajamani and Serdar Tasiran. MOCHA: Modularity in Model Checking. In CAV ’98: Pro­

ceedings o f the 10th International Conference on Computer Aided Verification, pages 521-525, 

1998.

Rajeev Alur and Thomas A. Henzinger. Reactive Modules. Formal Methods in System Design: 

An International Journal, 15(1):7—48, July 1999.

Rajeev Alur and Thomas A. Henzinger. Hierarchical Verification, chapter 8. Draft, March 2003.

Randal E. Bryant and Derek L. Beatty and Carl-Johan H. Seger. Formal Hardware Verification 

by Symbolic Ternary Trajectory Evaluation. In DAC ’91: Proceedings o f the 28th conference on 

ACM/IEEE Design Automation, pages 397-402, New York, NY, USA, 1991. ACM Press.

Ratan Nalumasu and Rajnish Ghughal and Abdelillah Mokkedem and Ganesh Gopalakrishnan. 

The Test Model-Checking Approach to the Verification of Formal Memory Models of Multi­

processors. In Computer Aided Verification, pages 464—476,1998.

Ravi Krishnan. Future of Embedded Systems Technology. BCC Research, June 2005.

Richard L. Rudell and Alberto L. Sangiovanni-Vincentelli. Multiple-Valued Minimization for 

PLA Optimization. IEEE Transactions on CAD o f Integrated Circuits and Systems, 6(5):727— 

750, 1987.

Richard Goering. ESL May Rescue EDA, Analysts Say. EE Times, June 2005.

Samar Abdi and Daniel Gajski. Verification of System Level Model Transformations. Interna­

tional Journal o f Parallel Programming, 34(1):29—59, 2006.

Sanjay Rekhi and Rangarajan Sri Purasai. The Next Level of Abstraction: Evolution in the Life 

of an ASIC Design Engineer. Synopsys Users Group (SNUG), San Jose, 2003.

Shinjiro Kakita and Yosinori Watanabe and Douglas Densmore and Abhijit Davare and Alberto 

Sangiovanni-Vincentelli. Functional Model Exploration for Multimedia Applications via Alge­

braic Operators. In Sixth International Conference on Application o f Concurrency to System 

Design (ACSD), June 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.prosilog.org


www.manaraa.com

188

[Son07] Sonics. Sorties Studio. World Wide Web, http://www.sonicsinc.com, 2007.

[S0 0 O6 ] Soonhoi Ha and Choonseung Lee and Youngmin Yi and Seongnam Kwon and Young-Pyo Joo.

Hardware-Software Codesign of Multimedia Embedded Systems: The PeaCE. 12th IEEE 

International Conference on Embedded and Real-Time Computing Systems and Applications 

(RTCSA’06), 0:207-214, 2006.

[Sum07] Summit Design. System Architect. World Wide Web, http://www.sd.com, 2007.

[The04] The Metropolis Project Team. The Metropolis Meta Model Version 0.4. Technical Report

UCB/ERL M04/38, University of California, Berkeley, September 2004.

[Tho02] Thomas A. Henzinger and Ranjit Jhala and Rupak Majumdar and George C. Necula and Gregoire

Sutre and Westley Weimer. Temporal Safety Proofs for Systems Code. In Proceedings o f the 

14th International Conference on Computer-Aided Verification (CAV), pages 526-538. Lecture 

Notes in Computer Science 2404, Springer-Verlag, 2002.

[Tho03] Thomas Wiegand and Gary J. Sullivan and Gisle Bjntegaard and Ajay Luthra. Overview of

the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems for Video 

Technology, 13(7):560-576, 2003.

[TsuOO] Tsugio Makimoto. The Rising Wave of Field Programmability. In International Conference on

Field Programmable Logic and Applications (FPL), pages 1-6,2000.

[Uni07] Unified Modeling Language. UML. World Wide Web, http://www.uml.org, 2007.

[VaS07] VaST Systems. Comet/Meteor. World Wide Web, http://www.vastsystems.com, 2007.

[WilOl] William S. Coates and Jon K. Lexau and Ian W. Jones and Scott M. Fairbanks and Ivan E. Suther­

land. FLEETzero: An Asynchronous Switching Experiment. In ASYNC ’01: Proceedings o f the 

7th International Symposium on Asynchronous Circuits and Systems, pages 173-182, Washing­

ton, DC, USA, 2001. IEEE Computer Society.

[Xil02] Xilinx. Virtex II Pro Platform FPGA Handbook, UG120 (v2.0) edition, October 2002.

[Xil03a] Xilinx. FIFOs using Virtex IIBlock RAM, XApp258 (vl.3) edition, January 2003.

[Xil03b] Xilinx. PowerPC Processor Reference Guide, EDK 6.1 edition, September 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sonicsinc.com
http://www.sd.com
http://www.uml.org
http://www.vastsystems.com

